
Encrypted Image Folding Software (EIFS)

Manual for MATLAB routines

James Bowley
Aston University, Birmingham, B4 7ET, UK

This software is intended to support the dissemination of techniques developed
within the EPSRC funded project.

“Highly nonlinear approximations for sparse signal representation”

http://www.nonlinear-approx.info



Contents

1 Approximation Routines 4
1.1 Function-Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Function-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 ApproxDCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 ApproxRDCTDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 OMP2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 ProcessCellImageDCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 ProcessCellImageGreedy2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.6 ProcessCellImageRDCTDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Common Routines 7
2.1 Function-Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Function-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 ApproxBitdepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 BlockImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 CalcPSNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 DCos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.6 GenerateEncryptionOperator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.7 KroneckerIndex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.8 LoadImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.9 MImage2Grey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.10 MakeFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.11 NormDict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.12 SaveImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Example 10
3.1 Function-Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Function-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 EIFSExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Expanding Routines 11
4.1 Function-Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Function-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.1 ExpandImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 RRescaleCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2.3 SeparateCellImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Folding Routines 13
5.1 Function-Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Function-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2.1 FoldImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.2 GenerateEmbeddedImage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2.3 RescaleCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1



6 Additional Scripts 15
6.1 Function-Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Function-Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2.1 CompileOMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2



Introduction

This software if freely distributed, under GNU license, for noncommercial use. It was developed by James
Bowley to implement the method Encrypted Image Folding (EIF) proposed in the paper

[1]Sparsity and “Something Else”: An Approach to Encrypted Image Folding,
by James Bowley and Laura Rebollo-Neira.

All the source files for the routines are available at

http://www.nonlinear-approx.info/EIFS/EIFS.zip,

an example in html can be found at

http://www.nonlinear-approx.info/EIFS/Example/index.html.

To install the EIFS software:

1) Download and extract the file EIFS.zip. This should give you a top directory EIFS and 7 sub directories
listed below:

– Approximation Routines - required for approximating and folding the images.

– Common Routines - required for both folding and unfolding.

– Example - contains an example showing how to use the EIF software.

– Expanding Routines - required for expanding folded images.

– Folding Routines - required for folding the image.

– Images - location of test images.

– Mex Files - source code for the mex implementation of OMP2D.

2) Add the directory EIFS and all subdirectories to your MATLAB path.

3) Optional: To decrease the execution time when using the RDCTDB dictionary you can use the RDCT-
DBMex method which uses a C++ implementation of OMP2D. To do this i) compile the OMP2D.cpp
file ii) copy it to the Approximation Routines subdirectory.
Note 1: i) and ii) can be done simply running the script CompileOMP in the Mex Files subdirectoy.
Note 2: MATLAB has to be configured to compile mex files, please refer to the MATLAB documentation
for details of how to do this.

The EIFS software has been tested on MATLAB versions 2009a and 2010a.
Most of this manual from our MATLAB sources was generating with the M2TEX script of Andreas Hartmann.

3



Chapter 1

Approximation Routines

1.1 Function-Summary

ApproxDCT Approximates a 2D signal by thresholding the smallest DCT coefficients.
ApproxRDCTDB Approximates a 2D signal using the RDCTDB dictionary and the OMP

algorithm.
OMP2D Orthogonal Matching Pursuit in 2D
ProcessCellImageDCT Applies ApproxDCT to every cell in a blocked image.
ProcessCellImageGreedy2D Using the supplied 1D dictionary it applies the greedy algorithm specified

to every cell in a blocked image.
ProcessCellImageRDCTDB Applies ApproxRDCTDB to every cell in a blocked image.

1.2 Function-Description

1.2.1 ApproxDCT

Approximates a 2D signal by thresholding the smallest DCT coefficients.

1.2.2 ApproxRDCTDB

Approximates a 2D signal using the RDCTDB dictionary and the OMP algorithm.

Implementation of OMP in 2D using 2 separable 1D dictionaries (for rows and columns)

The dictionaries used here are Da and Db where:

Da - Normalized redundancy 2 discrete cosine dictionary.

Db - Dirac basis.

This implementation uses the fast DCT to calculate the inner products with the residual as

in equations (3)-(5) of [1].

Usage: [ mImageApprox, vCoefficients, iD1, iV1, iD2, iV2, k, i1D ] = ApproxRDCTDB( ...

mImage, mDictionary, tolerance, blockWidth );

Inputs:

mImage Matrix representing a block of the image.

mDictionary Dictionary of normalized atoms: [Da, Db]⊗ [Da, Db];
tolerance Stop when norm of the residual < tolerance.

blockWidth Width of the square matrix mImage.

Outputs:

mImageApprox Approximation of mImage.

vCoefficients Coefficients of the decomposition.

iD1 Indices of the dictionary to which the selected atom belongs (w.r.t

4



columns) iD1 = 1 indicates that the selected atom belongs to dictionary

Da.

iV1 Indices of the selected atom in the dictionary iD1.

iD2 Indices of the dictionary to which the selected atom belongs (w.r.t.

rows).

iV2 Indices of the selected atom in the dictionary iD2.

k Number of selected atoms.

i1D Indices of the selected atoms in mDictionary.

The implementation of OMP method is based on Gram-Schmidt orthonormalization and adaptive

birothogonalization, as proposed in Ref 2 below.

References:

1-Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, "Orthogonal matching pursuits:

recursive function approximation with applications to wavelet decomposition", in Proceedings of

the 27th Asilomar Conference on Signals, Systems and Computers, 1993.

2-L. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach",

IEEE Signal Processing Letters, Vol(9,4), 137-140, 2002.

1.2.3 OMP2D

Orthogonal Matching Pursuit in 2D

It creates an atomic decomposition of a 2D signal using OMP criterion and assuming

separable dictionaries. You can choose a tolerance, the number of atoms to take in or an

initial subspace to influence the OMP algorithm.

Usage: [H,Di1,Di2, beta, c,Q ] = OMP2D( f, Dx,Dy, tol, No, ind);

H = OMP2D(f,Dx,Dy); variables tol, No, can also be []

Inputs:

f Analyzing 2D signal (Image).

Dx Dictionary of normalized atoms (w.r.t. Image rows).

Dy Dictionary of normalized atoms (w.r.t. Image columns).

tol Desired distance between f and its approximation H.

Default=6.5.
No (optional) maximal number of atoms to choose, if the number of chosen atoms

equals to No, routine will stop (default numel(f)).
indx (optional) indices for an initial subspace; They operate as indx(k),indy(k).

indy (optional) indices determining the initial subspace (as above).

Outputs:

H Approximation of f
Di1 Indices of selected atoms w.r.t the original Dx

Di2 Indices of selected atoms w.r.t the original Dy

beta Biorthogonal atoms corresponding to the 2D selected atoms

c Coefficients of the atomic decomposition

Q Orthogonal 2D basis for the selected subspace

The implementation of OMP method is based on Gram-Schmidt orthonormalization and adaptive

birothogonalization, as proposed in Ref 2 below.

References:

1-Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad, "Orthogonal matching pursuits:

5



recursive function approximation with applications to wavelet decomposition", in

Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, 1993.

2-L. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach", IEEE

Signal Processing Letters, Vol(9,4), 137-140, (2002).

1.2.4 ProcessCellImageDCT

Applies ApproxDCT to every cell in a blocked image.

1.2.5 ProcessCellImageGreedy2D

Using the supplied 1D dictionary it applies the greedy algorithm specified to every cell in a blocked image.

1.2.6 ProcessCellImageRDCTDB

Applies ApproxRDCTDB to every cell in a blocked image.

6



Chapter 2

Common Routines

2.1 Function-Summary

ApproxBitdepth Returns the minimum bit depth that can be used to represent the range
of pixel intensities in an image.

BlockImage Splits a 2D signal into nYBlocks x nXBlocks cell of blockWidth x block-
Width matrices.

CalcPSNR Calculates the Peak Signal to Noise Ratio (PSNR) between 2 matrices
containing pixel intensity values.

DCos Generates a matrix who’s columns are Discrete Cosine vectors.
Dictionary Constructs and returns the requested dictionary.
GenerateEncryptionOperator Generates encryption operator for the FoldImage and ExpandImage rou-

tines.
KroneckerIndex Given the indexes in Da and Db it returns the index in D ⊗ D where

D = [Da, Db].
LoadImage Takes the path to an image file as input and returns a matrix represen-

tation of the image.
MImage2Grey Converts indexed and truecolor image matrices to a matrix where each

element represents a greyscale pixel intensity value.
MakeFigures Displays a figure with four subfigures showing the original image, the

folded image, the image recovered with the incorrect private key and the
image recovered with the correct private key.

NormDict Normalizes a given dictionary.
SaveImage Saves a matrix as a lossless JPEG file.

2.2 Function-Description

2.2.1 ApproxBitdepth

Returns the minimum bit depth that can be used to represent the range of pixel intensities in an image.

2.2.2 BlockImage

Splits a 2D signal into nYBlocks x nXBlocks cell of blockWidth x blockWidth matrices.

If the matrix cannot be split exactly into blocks of blockWidth x blockWidth then it is

reduced in size so it can be.

2.2.3 CalcPSNR

Calculates the Peak Signal to Noise Ratio (PSNR) between 2 matrices containing pixel intensity values.

7



2.2.4 DCos

Generates a matrix who’s columns are Discrete Cosine vectors.

Returns discrete cosine vectors that belong to the Euclidean space of size szSpace. The

default is to return a basis for the space.

Usage mCosines = DCos( szSpace, nFrequencies, redundancy );

mCosines = DCos( szSpace, nFrequencies );

mCosines = DCos( szSpace );

Inputs:

szSpace Size of the Euclidean space the vectors should belong to.

nFrequencies Number of frequencies to use starting from 0. If not specified will be

the same as the size of the space.

redundancy Redundancy of the dictionary, the default is 1 (basis).

Outputs:

mCosines Matrix who’s columns are discrete cosine vectors.

2.2.5 Dictionary

Constructs and returns the requested dictionary.

Returns the Kronecker product of either:

1) The discrete cosine atoms spanning Rsz1DSpace with themselves or,

2) The combined dictionary [Da, Db] with itself where:

Da - Normalized redundancy 2 discrete cosine dictionary.

Db - Dirac basis.

Usage: [mDictionaryKron, mDictionary, vSize] = Dictionary( type, sz1DSpace );

Inputs:

type DCT - Basis of discrete cosines for the space Rsz1DSpace.
RDCTDB - Dictionary [Da, Db].

sz1DSpace Dimension of atoms before applying the Kronecker product.

Output:

mDictionaryKron Matrix containing the 2D dictionary.

mDictionary Matrix containing the 1D dictionary.

vSize Vector containing the sizes of each 1D dictionary.

2.2.6 GenerateEncryptionOperator

Generates encryption operator for the FoldImage and ExpandImage routines.

First the routine calculates the orthogonal complement of the approximated image space

using a random matrix generated with a public key (c.f. eq. 11 and 12 in [1]) to avoid

plain text attacks.

Then it rotates (or permutes) these vectors using a a random matrix generated with a

private key to obtain the encryption operator (c.f. eq. 13 in [1]).

Usage: mEncryptionOperator = GenerateEncryptionOperator( mAtoms, x, sKey, mPOrthSpace );

Inputs:

mAtoms Atoms spanning the approximated image space.

x Number of used to construct the encryption operator.

sKey Structure containing encryption variables.

mPOrthSpace Orthogonal projection matrix onto the mAtoms.

8



Outputs:

mEncryptionOperator Encryption operator.

2.2.7 KroneckerIndex

Given the indexes in Da and Db it returns the index in D ⊗D where D = [Da, Db].

Usage: ind = KroneckerIndex( iD1, iD2, iV1, iV2, vSize );

Inputs

iD1 Indices of the dictionary to which the selected atom belongs (w.r.t

columns) iD1 = 1 indicates that the selected atom belongs to dictionary

Da.

iV1 Indices of the selected atom in the dictionary iD1.

iD2 Indices of the dictionary to which the selected atom belongs (w.r.t.

rows).

iV2 Indices of the selected atom in the dictionary iD2.

vSize Vector containing the sizes of each 1D dictionary.

Output

ind Index in the larger dictionary D.

2.2.8 LoadImage

Takes the path to an image file as input and returns a matrix representation of the image.

2.2.9 MImage2Grey

Converts indexed and truecolor image matrices to a matrix where each element represents a greyscale pixel
intensity value.

2.2.10 MakeFigures

Displays a figure with four subfigures showing the original image, the folded image, the image recovered with
the incorrect private key and the image recovered with the correct private key.

2.2.11 NormDict

Normalizes a given dictionary.

Usage: D = NormDict( D, delta );

D = NormDict( D );

Inputs:

D Non-normalized dictionary.

delta Parameter, the discrete norm of D is multiplied by
√
(delta).

Default value is 1.
Outputs:

D Normalized dictionary.

Remark: It normalizes the columns of matrix D.

2.2.12 SaveImage

Saves a matrix as a lossless JPEG file.

9



Chapter 3

Example

3.1 Function-Summary

EIFSExample This example demonstrates the use of the Encrypted Image Folding Soft-
ware (EIFS) by reproducing the example in the paper:

3.2 Function-Description

3.2.1 EIFSExample

This example demonstrates the use of the Encrypted Image Folding Software (EIFS) by reproducing the example
in the paper:

[1] Sparsity and ‘something else’: An Approach to Encrypted Image Folding, by James

Bowley and Laura Rebollo-Neira (pdf)

The image is a 256 x 256 pixel grey level intensity photo of Bertrand Russell. The EIF

method is applied twice, using two different approaches for the representation:

1) The standard DCT in 2D by disregarding the smallest coefficients.

2) The RDCDB dictionary - composed of Discrete Cosine (redundancy 2) plus Dirac Basis

and a dedicated implementation of the Orthogonal Matching Pursuit (OMP) method for

these dictionaries.

For a much faster implementation of 2) please use the C++ implementation of OMP in 2D

(OMP2D).

For this:

i) compile the OMP2.cpp file and move it to EIFS/Approximation_Routines folder, all this

can be done simply by running the script CompileOMP in the EIFS/Mex_Files

subdirectory

ii) replace ’RDCTDB’ below (line 58) by ’RDCTDBMex’.

For each method, the unfolding operation is performed twice, using the correct and

incorrect private keys. The corresponding results shown in Figures 1 and 2.

10



Chapter 4

Expanding Routines

4.1 Function-Summary

ExpandImage Expands an image from folded image by 1) splitting the host and em-
bedded image and 2) using the embedded coefficients to reconstruct the
original.

RRescaleCoefficients Used by ExpandImage to rescale coefficients.
SeparateCellImage Used by ExpandImage to 1) separate the host and embedded image

using SplitOrthComp and 2) retrieve the embedded coefficients using
GenerateEncryptionOperator.

4.2 Function-Description

4.2.1 ExpandImage

Expands an image from folded image by 1) splitting the host and embedded image and 2) using the embedded
coefficients to reconstruct the original.

The procedure is as follows:

I) Load the image from the imagePath or matrix supplied and split it into Q blocks Iq of

blockWidth2 pixels each.

II) Split the host and embedded image.

III) Recover the embedded coefficients from the embedded image using the encryption

operator

IV) Reconstruct the rest of the original image from embedded coefficients.

Usage: mRecoveredImage = ExpandImage( foldedImage, cIndex, method, blockWidth, mImage,...

publicKey, privateKey, rotate );

Inputs:

MANDATORY

foldedImage Either the path to where the folded image is saved as a lossless JPEG

file or a matrix representing the folded image.

cIndex A cell structure containing the index’s of the atoms in the sparse

representation.

mImageGrey A matrix representation of the original image converted to grey level

and altered in size so that it can be blocked exactly.

method Approximation method either:

DCT - Discrete Cosine Transform.

RDCTDB - Implementation of OMP in 2D using 2 separable 1D

dictionaries (for rows and columns).

The dictionaries used here are Da and Db where:

11



Da: Normalized redundancy 2 discrete cosine dictionary.

Db: Dirac basis.

RDCTDBMex - Mex file for implementing the above RDCTDB method.

blockWidth The image is independently processed in Q square blocks of width

blockWidth.

Default is 8.
publicKey Key used to generate a the random matrix to calculate the vectors

spanning the orthogonal subspace S⊥
Kq

(c.f. eq. 11 in [1]). This

can be changed publicly to prevent plain text attacks.

Default is 7.
privateKey Key used to prevent unauthorized unfolding of the image (c.f. eq. 13 in

[1]).

Default 123456789.
rotate Determines the method of preventing unauthorized recovery:

1 - the orthogonal basis is randomly rotated (c.f. eq. 13 in [1]).

0 - the orthogonal basis is randomly permuted.

Default is to rotate (1).

Outputs:

mRecoveredImage A matrix containing the recovered image.

4.2.2 RRescaleCoefficients

Used by ExpandImage to rescale coefficients.

4.2.3 SeparateCellImage

Used by ExpandImage to 1) separate the host and embedded image using SplitOrthComp and 2) retrieve the
embedded coefficients using GenerateEncryptionOperator.

12



Chapter 5

Folding Routines

5.1 Function-Summary

FoldImage Loads an image and folds it using a public and private key.
GenerateEmbeddedImage Used by FoldImage to embed coefficients in a generated image (c.f. eq.

8 in [1]).
RescaleCoefficients Used by FoldImage to rescale coefficients.

5.2 Function-Description

5.2.1 FoldImage

Loads an image and folds it using a public and private key.

When viewing an image from top to bottom this routine folds the bottom section into a

sparse representation of the top section. The procedure is as follows:

I) Load the image from the supplied imagePath and split it into Q blocks Iq containing

Nq x Nq = blockWidthˆ2 pixels each.

II) Find a sparse representation of each block I
Kq
q in a subspace SKq (c.f. eq. 10 in

[1]).

III) The number of host blocks H depends on the sparsity in the approximation of the

whole image I. For each of these H blocks we calculate a basis for S⊥
Kq

(the orthogonal

complement of SKq in RNq x RNq).

IV) We map the coefficients of the sparse representation of the remaining Q − H blocks

onto the subspace S⊥
Kq

constructing in that way the matrices Fq in S⊥
Kq

(c.f. eq. 8 in [1]).

V) We add each matrix Fq to the corresponding host block I
Kq
q to obtain Gq = Fq + I

Kq
q ,

with I
Kq
q in SKq and Fq in S⊥

Kq
.

Usage: [ foldedImage, cIndex, mImageGrey, maxIntensity] = FoldImage( imagePath,...

approxMethod, approxCriteria, blockWidth, publicKey, privateKey,...

rotate, saveImage );

Inputs:

MANDATORY

imagePath Relative or absolute path to the location of the image file including the

image file name.

OPTIONAL

method Approximation method either:

DCT - Discrete Cosine Transform.

RDCTDB - Implementation of OMP in 2D using 2 separable 1D dictionaries

(for rows and columns).

13



The dictionaries used here are Da and Db where:

Da: Normalized redundancy 2 discrete cosine dictionary.

Db: Dirac basis.

RDCTDBMex - Mex file for implementing the above RDCTDB method.

Default is RDCTDB.

PSNR Desired PSNR of image approximation. The result will be a greater PSNR for

the whole image as each block must individually satisfy this criteria.

Default is 40dB.
blockWidth The image is independently processed in Q square blocks of width blockWidth.

Default is 8.
publicKey Key used to generate a the random matrix to calculate the vectors spanning

the orthogonal subspace S⊥
Kq

(c.f. eq. 11 in [1]). This can be changed

publicly to prevent plain text attacks.

Default is 7.
privateKey Key used to prevent unauthorized unfolding of the image (c.f. eq. 13 in [1]).

Default 123456789.
rotate Determines the method of preventing unauthorized recovery:

1 - the orthogonal basis is randomly rotated (c.f. eq. 13 in [1]).

0 - the orthogonal basis is randomly permuted.

Default is to rotate (1).
saveImage Determines what is returned to the variable foldedImage.

1 - path to where the folded image is saved as a lossless JPEG.

0 - matrix representation of the folded image.

Default is to save (1).

Outputs:

foldedImage Either the path to where the folded image is saved as a lossless JPEG

file or a matrix representing the folded image.

cIndex A cell structure containing the index’s of the atoms in the sparse

representation.

mImageGrey A matrix representation of the original image converted to grey level

and altered in size so it can be blocked exactly.

maxIntensity Maximum size of pixel intensity that can be used.

5.2.2 GenerateEmbeddedImage

Used by FoldImage to embed coefficients in a generated image (c.f. eq. 8 in [1]).

5.2.3 RescaleCoefficients

Used by FoldImage to rescale coefficients.

14



Chapter 6

Additional Scripts

6.1 Function-Summary

CompileOMP Script to compile the OMP2D.cpp file and copy it to the Approxima-
tion Routines directory.

6.2 Function-Description

6.2.1 CompileOMP

Script to compile the OMP2D.cpp file and copy it to the Approximation Routines directory.

15


