Highly nonlinear approximations for signal representation Manual for MATLAB routines

James BOWLEY, Laura REBOLLO-NEIRA and Zhiqiang XU
Aston University, Birmingham, B4 7ET, UK
http://www.nonlinear-approx.info

This project is supported by EPSRC (EP/D062632/1).

Engineering and Physical Sciences
Research Council

Contents

I Pursuits 3
1 Pursuits 4
1.1 Function-Summary 4
1.2 Function-Description 4
1.2.1 BOOMP 4
1.2.2 BOOMPQ 5
1.2.3 KSwapping 5
1.2.4 OBOMP 6
1.2.5 OBOMPKSwaps 7
1.2.6 OMP 8
1.2.7 OMPFinalRefi 9
1.2.8 OMPKSwapRefi 9
1.2.9 OMPKSwapping 10
1.2.10 OMPKSwaps 11
1.2.11 OMPSwapping 12
1.2.12 OOMP 12
1.2.13 OOMPFinalRefi 13
1.2.14 OOMPKSwapRefi 14
1.2.15 OOMPKSwaps 14
1.2.16 Swapping 15
1.2.17 VFSwapping 16
2 Lq Minimization 17
2.1 Function-Summary 17
2.2 Function-Description 17
2.2.1 ALqMin 17
2.2.2 LqFOCUSS 18
2.2.3 RegFOCUSS 18
3 Examples 19
3.1 Example-Summary 19
3.2 Example-Description 19
3.2.1 exa_OBOMP 19
3.2.2 exa_OOMPKSwaps 19
3.2.3 exa_chirp 19
II Projectors and Duals 20
4 Projectors 21
4.1 Function-Summary 21
4.2 Function-Description 21
4.2.1 ObliProj 21
4.2.2 OptObliProj 22
4.2.3 OrthProj 22
4.2.4 RegObliProj 23
5 Duals 24
5.1 Function-Summary 24
5.2 Function-Description 24
5.2.1 BioBack 24
5.2.2 BioDictDel 25
5.2.3 BioDictIns 25
5.2.4 BioFor 26
5.2.5 BioInsert 26
5.2.6 DRE 27
5.2.7 DREOr 27
5.2.8 DREOrp 28
5.2.9 FrDelete 28
5.2.10 FrInsert 29
5.2.11 FrInsertBlock 29
5.2.12 NBioDictIns 30
5.2.13 NBioInsert 30
6 Examples 31
6.1 Example-Summary 31
6.2 Example-Description 31
6.2.1 exa_ObliProj 31
6.2.2 exa_OptObliProj 31
6.2.3 exa_RegObliProj 31
III Image Processing Tools 32
6.3 Function-Summary 33
6.4 Function-Description 33
6.4.1 CalcPSNR 33
6.4.2 DCos 33
6.4.3 DetectLines 33
6.4.4 GenerateHats 34
6.4.5 GenerateTrapezium 34
6.4.6 ImageApproximation 34
6.4.7 RemoveDependantAtoms 35
6.4.8 TranslatePrototype 35
6.5 Examples 36
6.6 Example-Summary 36
6.7 Example-Description 36
6.7.1 exa_image_approximation 36
6.7.2 exa_impulse_removal 36
IV Spline Dictionaries 38
7 Uniform 39
7.1 Function-Summary 39
7.2 Function-Description 39
7.2.1 BSpline 39
7.2.2 DictSpline 40
7.2.3 Differ 40
7.2.4 ErrorTest 40
7.2.5 Green 40
7.2.6 NormDict 41
7.2.7 SplineLevel 41
7.2.8 SymSpline 41
7.2.9 TSpline 42
8 Non Uniform 43
8.1 Function-Summary 43
8.2 Function-Description 43
8.2.1 CutDic 43
8.2.2 NonBSpline 43
8.2.3 NonUniB 44
8.2.4 ProducePartition 44
9 Wavelets 45
9.1 Function-Summary 45
9.2 Function-Description 45
9.2.1 BuildDict 45
9.2.2 ElimBound 47
9.2.3 GDictFast 47
9.2.4 NumFun 48
9.2.5 SPL 48
9.2.6 STPoint 48
9.2.7 ScalLevel 49
9.2.8 SplineChuiWav 49
9.2.9 SplineScal 50
9.2.10 SplineWavelet 50
9.2.11 WavLevel 50

Preface

This document was written as an users guide to the computational tools delivered by the EPSRC funded project "Highly nonlinear approximations for sparse signal representation". More information about the project and tutorial material related to the routines of this manual are given in the website http://www.nonlinearapprox.info.

The project followed on of the previous EPSRC funded project "Biorthogonal techniques for optimal signal represeation. Thanks are due to Miroslav Andrle for leaving the material of that project well organized, which facilitated the continuation of the work.

We would like to thank to Andreas Hartmann for his M2TEX script which has been used for generating most of this manual from our MATLAB sources.

Part I

Pursuits

Chapter 1

Pursuits

1.1 Function-Summary

BOOMP	Backward-Optimized Orthogonal Matching Pursuit
BOOMPQ	Backward-Optimized Orthogonal Matching and gives the orthonormal basis
KSwapping	extends Swapping to considering K swaps
OBOMP	Oblique Optimized Matching Pursuit
OBOMPKSwaps	Oblique Optimized Matching Pursuit with k swaps
OMP	Orthogonal Matching Pursuit
OMPFinalRefi	Refinment of OMP
OMPKSwapRefi	Refiment of OOMP by kswapping and backward deleting steps
OMPKSwapping	extends OMPSwapping to considering K swaps
OMPKSwaps	Optimized Orthogonal Matching Pursuit with k swaps
OMPSwapping	Swapping based refinement of OMP method
OOMP	Optimized Orthogonal Matching Pursuit
OOMPFinalRefi	refinament of OOMP by swapping and backward deleting steps.
OOMPKSwapRefi	Refiment of OOMP by kswapping and backward deleting steps
OOMPKSwaps	Optimized Orthogonal Matching Pursuit with k swaps
Swapping	Swapping based refinement of OMP methods
VFSwapping	Swapping based refinement of OMP methods (inner product implemen- tation)

1.2 Function-Description

1.2.1 BOOMP

Backward-Optimized Orthogonal Matching Pursuit

```
Using the Least Square criterion at each step it eliminates one function from a given
basis to have best possible representation in the reduced space. It also modifies the
corresponding biorthogonal functions.
Usage: [ D, Di, beta, c ] = BOOMP( f, D, beta, tol, No );
Inputs:
    f signal to represent
    D set of chosen independent functions
    beta set of biorthogonal functions to D
    tol tolerance, desired difference between signal and its approx, (optional,
    default tol=1.0e-2)
```

No (optional) desired number of atoms in the decomposition if you want really No atoms set tol=0, it speeds the process

Outputs:
D new reduced set of independent functions
Di indices of atoms in new D w.r.t. to original D
beta biorthogonal functions to new D
c coefficients of the atomic decomposition

Note: this routine should be use only at the end of our selection process since it is not adapting (for the speed purposes) unselected dictionary functions. Thus any of our forward selection methods cannot be used after this.

References:
M. Andrle, L. Rebollo-Neira, and E. Sagianos, "Backward-Optimized Orthogonal Matching Pursuit Approach", IEEE Signal Processing Letters, Vol (11,9), 705-708 (2004).

1.2.2 BOOMPQ

Backward-Optimized Orthogonal Matching and gives the orthonormal basis
Using the Least Square criterion at each step it eliminates one function from a given basis to have best possible representation in the reduced space. It also modifies the corresponding biorthogonal functions and orthonormal basis (obtained by modified Gram-Schmidt).

Usage: $\quad[\mathrm{D}, \mathrm{Di}, \mathrm{Q}$, beta, c$]=\mathrm{BOOMPQ}(\mathrm{f}, \mathrm{D}, \mathrm{Di}, \mathrm{Q}$, beta, toli, No);
[D, Di, Q, beta, c] = BOOMPQ(f, D, Di, Q, beta, tol);

Inputs:
$f \quad$ analyzing signal D dictionary $D(:, 1: N)$ is the selected basis, $N=$ size (beta,2)
Di indices of atoms $Q \mathrm{Q}(:, 1: N)$ orthonormal set spanning $D(:, 1: N), Q(:, N+1: e n d)$ the rest of the dictionary orthogonalized w.r.t $Q(:, 1: N)$
beta set of biorthogonal functions to $D(:, 1: N)$ tol tolerance, difference between signal and approx, (optional, default tol=1.0e-2)
No (optional) desired number of atoms in the decomposition if you want really No atoms set tol=0, it speeds the process

Outputs:
D rearranged dictionary
D(:, 1:s) reduced basis, s=size(beta,2)
Di indices of atoms in new D w.r.t. to original $D Q Q(:, 1: s)$ orthonormal set spanning $D(:, 1: N), Q(:, s+1: e n d)$ the rest of the dictionary orthogonalized w.r.t Q(: $1: s)$
beta biorthogonal functions to new $D(:, 1: s) c$ coefficients of the atomic decomposition

References:

M. Andrle, L. Rebollo-Neira, and E. Sagianos, "Backward-Optimized Orthogonal Matching Pursuit Approach", IEEE Signal Processing Letters, Vol (11,9), 705-708 (2004).

1.2.3 KSwapping

extends Swapping to considering K swaps
Given an initial approximation of f, it improves upon the approximation by interchanging swi-pairs of atoms (swi from the approximation and swi from the dictionary) then (swi+1)-atoms and (swi+1)-atoms, (swi+2)-atoms and (swi+2)-atoms and so on up to
sws-atoms, unless the desired precision tol has been reached. (See Ref[1]). If the number of atoms involved in the swapping process is equal to sws and the stopping criterion based on the precision tol has not been reached the function returns the value re=0. Note: The inputs are obtainable by running OOMP first (see the example)

Usage: [re, resid, D, Di, beta, C, Q] = KSwapping(f, D, Di, Q, beta, C, swi,... sws, tol);
[re, resid, D, Di, beta, C, Q] = KSwapping(f, D, Di, Q, beta, C);
Inputs:
f signal to be decomposed
D dictionary, first k functions $D(:, 1: k)$ are the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal functions to $\mathrm{D}(:, 1: \mathrm{k})$, $\mathrm{k}=$ size(beta, 2)
C coefficients in the expansion
Q $Q(:, 1: k)$ orthonormal basis spanning the same space as $D(:, 1: k), Q(:, k+1: e n d)$
unselected atoms subtracted by their component in $\mathrm{D}(:, 1: \mathrm{k})$
swi minimum number of atoms to be swapped, default swi=1
sws maximum number of atoms to be swapped
tol tolerance for the approximation, default tol= $1 \mathrm{e}-8$
Outputs:
re convergence indicator: re=1 if the method converges within the given tol and re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first component of resid is the residual when swi atoms are swapped, the second component is the residual when (swi+1) atoms are swapped and so on. If the swapping is started from swi atoms, resid is of length sws-swi+1
D updated (re-arranged) dictionary, $D(:, 1: k)$ is the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal vectors to $D(:, 1: k)$
C coefficients in the expansion
Q $Q(:, 1: k)$ orthonormal basis spanning the same space as $D(:, 1: k), Q(:, k+1: e n d)$ unselected atoms subtracted by their component in $D(:, 1: k)$

References:
[1] M. Andrle and L. Rebollo-Neira, "Improvement of Orthogonal Matching Pursuit strategies by Backward and Forward movements," in Proc. of the 31st International Conference on Acoustics, Speech, and Signal Processing (ICASSP'06)
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching pursuit strategies", Signal Processing, Vol (86,3), 480-495 (2006)
[3] L. Rebollo-Neira, "Measurements design and phenomena discrimination", J. Phys. A: Math. Theor. 42 (2009)

See also OOMPKSwaps OMPKSwaps OBOMPKSwaps Swapping OOMP

1.2.4 OBOMP

Oblique Optimized Matching Pursuit
Constructs an atomic decomposition which gives the oblique projection of a signal onto a subspace of the span of V along span of WC.

It first generates orthogonal projections onto the orthogonal complement ofthe span of WC and then find the atomic decomposition of the projected signal by the OOMP method.

For an example of how to use OBOMP to separate signal components run the code Exa_OBOMP

Usage: $\quad[\mathrm{fv}]=\operatorname{OBOMP}(\mathrm{f}, \mathrm{V}, \mathrm{WC})$;
[fv, Vnew, Di, beta, c, U, Q] = OBOMP(f, V, WC, err, No, opt, ind);
Inputs:
f signal to be projected
V dictionary for the space to project onto
WC dictionary spanning the space to project along
err error of each point of f (vector) or tolerance for the error's norm (scalar)
No (optional) maximal number of atoms to choose, if the number of chosen atoms
equals to No, the routine will stop (default No=size(V,2))
ind (optional) indices determining the initial subspace
opt (optional) chose the method for computing the orthogonal projector with
OrthProj (default opt=2 with tolerance for linear independence 1e-7)

Outputs:
Vnew the dictionary V rearranged according to the selection process Vnew (:, 1:k)
contains the atoms chosen into the atomic decomposition
Di indices of atoms in Vnew written w.r.t the original V
U Dictionary for the orthogonal complement of $W C$ ($\mathrm{U}(:, 1: \mathrm{k})$) is a basis bi-orthogonal to beta)
Q the first k columns $Q(:, 1: k)$ gives an orthonormal basis for the span of U(: $1: k)$
beta ' k ' biorthogonal vectors to new $V(:, 1: k)$ and $U(:, 1: k)$ (in span of $U(:, 1: k)$)
c 'k' coefficients of the atomic decomposition for the oblique projection
$f v \quad$ oblique projection of f onto new $V(:, 1: k)$ along $W C$, i.e $f v=\operatorname{Vnew}(:, 1: K) * C$ '

References

[1] L. Rebollo-Neira, "Oblique Matching Pursuit", IEEE Signal Processing Letters, 14,10, 703-707 (2007).
[2] L. Rebollo-Neira, "Measurements design and phenomena discrimination", J. Phys. A: Math. Theor. 42 (2009).

See also OBOMPKSwaps OOMP OOMPKSwaps

1.2.5 OBOMPKSwaps

Oblique Optimized Matching Pursuit with k swaps
Constructs an atomic decomposition which gives the oblique projection of a signal onto a subspace of the span of V , along span of WC , using OOMPKSwaps.

It first takes the orthogonal projection onto the orthogonal complement of the span of WC, then finds the atomic decomposition of the projected signal by the OOMP method and corrects with KSwapping to obtain the sought projection.
for an example on how to use OBOMPKSwaps to separate signal components run the code exa_OBOMPKSwaps

Usage: [re, resid, fv, Vnew, Di, beta, C, U, Q] = OBOMPKSwaps(f, V, WC, err,... opt, No, ind, swi, sws, tols);
[re, resid, fv, Vnew, Di] = OBOMPKSwaps(f, V, W);
Inputs:
f signal to be projected
V dictionary for the space to project onto
WC dictionary spanning the space to project along

```
err (optional) error of each point of f, or tolerance for the error's norm, before
        starting the corrections (default err=0.0001*norm(f))
    opt (optional) chose the method for computing the orthogonal projector with
        OrthProj (default opt=2 with tolerance for linear Independence 1e-7)
No (optional) maximal number of atoms to choose,(default No=size(D,2))
ind (optional) indices determining the initial subspace
swi (optional) minimum number of atoms to be swapped, (default swi=1)
sws (optional) maximum number of atoms to be swapped, (default sws=size(beta,2))
tols (optional) tolerance for the final approximation (default 0.0000001*norm(f))
Outputs:
re convergence indicator: re=1 if the method converges within the given tols and
re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first
component of resid is the residual when swi atoms are swapped, the second
component when (swi+1) atoms are swapped and so on.
fv oblique projection of f onto new V(:,1:k) along WC, i.e. fv=Vnew(:,1:K)*C'
Vnew the dictionary V rearranged according to the selection process Vnew(:,1:k)
    contains the atoms chosen to construct the atomic decomposition
Di indices of atoms in Vnew written w.r.t the original V
beta 'k' biorthogonal vectors to new V(:,1:k) and U(:,1:k)(spanning the same space
    as U(:,1:k)
C 'k' coefficients of the atomic decomposition for the oblique projection
U Dictionary for the orthogonal complement of WC (U(:,1:k)) is a basis
    bi-orthogonal to beta)
Q the first k columns Q(:,1:k) gives an orthonormal basis for span of U(:,1:k)
    and beta.
```

References:
[1] L. Rebollo-Neira, "Oblique Matching Pursuit", IEEE Signal Processing Letters, 14,10, 703-707 (2007)
[2] L. Rebollo-Neira, "Measurements design and phenomena discrimination", J. Phys. A: Math. Theor. 42 (2009)

1.2.6 OMP

Orthogonal Matching Pursuit
It creates an atomic decomposition of a signal using OMP criterion. You can choose a tolerance, the number of atoms to take in or an initial subspace to influence the OMP algorithm.

```
Usage: [ Dnew, Di, beta, c ] = Omp( f, D, tol, No, ind );
    [ Dnew, Di ] = Omp( f, D, tol );
Inputs:
    f analyzing signal
    D dictionary of normalized atoms
    tol desired distance between f and its approximation the routine will stop if
    norm(f'-Dsub*(f*beta)')*sqrt(delta)<tol where delta=1/L, L is number of points
    in a sample
    No (optional) maximal number of atoms to choose, if the number of chosen atoms
    equals to No, routine will stop (default No=size(D,2)
    ind (optional) indices determining the initial subspace,
```

Outputs:

```
D the dictionary D rearranged according to the selection process D(:,1:k)
    contains the atoms chosen into the atomic decomposition
    Di indices of atoms in new D written w.r.t the original D
    beta 'k' biorthogonal functions corresponding to new D(:,1:k)
    c 'k' coefficients of the atomic decomposition
```


References:

L. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach", IEEE Signal Processing Letters, Vol $(9,4)$, 137-140, (2002).

See also OMPF.

1.2.7 OMPFinalRefi

Refinment of OMP

It creates an atomic decomposition for approximation a signal using OMP method up to a given tolerance. When possible, the sparsity is improved afterwards by a combination of swapping and backward deleting steps.

You can choose a tolerance, the maximum number of atoms in the decomposition and an initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their component in the chosen space are also available.

Usage: $\quad[\mathrm{DO}, \mathrm{DiO}]=$ OMPFinalRefi(f, D, tol); [DSO, DiO, beta0, c0, QO] = OMPFinalRefi(f, D, tol, No, ind);

Inputs:
f analyzing signal
D dictionary of normalized atoms
tol desired distance between f and its approximation the routine will stop if norm (f'-Dsub*(f*beta)')*sqrt(delta)<tol where delta=1/L (L is number of points in a sample) or delta=1, which is the default in OOMPF (to change this uncomment the corresponding line in OOMPF)
No (optional) maximal number of atoms to choose, if the number of chosen atoms equals to No, OOMP routine will stop (default No=size(D,2))
ind (optional) indices determining the initial subspace for OOMP
Outputs:
DSO the dictionary D rearranged according to the selection process $\operatorname{DSO}(:, 1: k)$ contains the atoms chosen into the atomic decomposition
DiO indices of atoms in DSO written w.r.t the original D
Q0 Q(:,1:k) contains orthonormal functions spanning DSO(:,1:k) Q(:,k+1:N) contains $\operatorname{DSO}(:, \mathrm{k}+1: \mathrm{N})$ subtracted by the projection onto the space generated by QO(:,1:k) (resp. DSO(:,1:k))
beta0 'k' biorthogonal functions corresponding to new DSO (:, 1:k)
c0 ' k ' coefficients of the atomic decomposition

1.2.8 OMPKSwapRefi

Refiment of OOMP by kswapping and backward deleting steps
It creates an atomic decomposition for approximation a signal using OOMP method up to a given tolerance. When possible, the sparsity is improved afterwards by a combination of kswapping and backward deleting steps.

You can choose a tolerance, the maximum number of atoms in the decomposition and an initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their
component in the chosen space are also available.

Usage:	[DO, DiO] = OMPKSwapRefi(f, D, tol); [DSO, Di0, QO, beta0, c0] = OMPKSwapRefi(f, D, tol, No, ind);
Inputs:	
f	analyzing signal
D	dictionary of normalized atoms
tol	desired distance between f and its approximation the routine will stop if norm (f'-Dsub*(f*beta)')*sqrt(delta)<tol where delta=1/L (L is number of points in a sample) or delta=1, which is the default in OOMPF (to change this uncomment the corresponding line in OOMPF)
No	(optional) maximal number of atoms to choose, if the number of chosen atoms equals to No, OOMP routine will stop (default No=size(D,2)
ind	(optional) indices determining the initial subspace for OOMP
swi	(optional) minimum number of atoms to swap (defaul=1)
sws	(optional) maximum number of atoms to swap (defaul=all)
[]	can be used for sws, swi, ind, No, and tol

Outputs:

DSO the dictionary D rearranged according to the selection process DSO(:,1:k) contains the atoms chosen into the atomic decomposition
DiO indices of atoms in DSO written w.r.t the original D
beta0 'k' biorthogonal functions corresponding to new DSO(:, $1: k$)
c0 ' k ' coefficients of the atomic decomposition
Q0 $Q(:, 1: k)$ contains orthonormal functions spanning $\operatorname{DSO}(:, 1: k), Q(:, k+1: N)$ contains DSO (:, $\mathrm{k}+1: \mathrm{N}$) subtracted by the projection onto the space generated by QO (:, 1:k) (resp. DSO (:, 1:k))

1.2.9 OMPKSwapping

extends OMPSwapping to considering K swaps
Given an initial approximation of f, it improves upon the approximation by interchanging swi-pairs of atoms (swi from the approximation and swi from the dictionary) then (swi+1)-atoms and (swi+1)-atoms, (swi+2)-atoms and (swi+2)-atoms and so on up to sws-atoms, unless the desired precision tol has been reached. (See Ref[1]). If the number of atoms involved in the swapping process is equal to sws and the stopping criterion based on the precision tol has not been reached the function returns the value re=0. Note: The inputs are obtainable by running OMP first (see the example)

For an example on how to use the routine see exa_00MPKSwaps
Usage: [re, resid, D, Di, beta, C, Q] = OMPKSwapping(f, D, Di, Q, beta, C, swi,... sws, tol);
[re, resid, D, Di, beta, C, Q] = OMPKSwapping(f, D, Di, Q, beta, C);

Inputs:

f analysing signal
D dictionary, first k functions $D(:, 1: k)$ are the selected basis
Di indices of atoms in D with respect to the original dictionary
Q $Q(:, 1: k)$ orthonormal basis spanning the same space as $D(:, 1: k)$
$\mathrm{Q}(:, \mathrm{k}+1:$ end $)$ unselected atoms subtracted by their component in $\mathrm{D}(:, 1: \mathrm{k})$
beta biorthogonal functions to $\mathrm{D}(:, 1: \mathrm{k})$, $\mathrm{k}=$ size(beta, 2)
C coefficients in the expansion
swi minimum number of atoms to be swapped, default swi=1
sws maximum number of atoms to be swapped
tol tolerance for the approximation, default tol= 1e-8

Outputs:
convergence indicator: re=1 if the method converges within the given tol and re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first
component of resid is the residual when swi atoms are swapped, the second component is the residual when (swi+1) atoms are swapped and so on. If the swapping is started from swi atoms, resid is of length sws-swi+1
D updated (re-arranged) dictionary, $D(:, 1: k)$ is the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal vectors to $D(:, 1: k)$
C coefficients in the expansion
Q $Q(:, 1: k)$ orthonormal basis spanning the same space as $D(:, 1: k)$
$\mathrm{Q}(:, \mathrm{k}+1:$ end) unselected atoms subtracted by their component in $\mathrm{D}(:, 1: \mathrm{k})$

References:

[1] M. Andrle and L. Rebollo-Neira, "Improvement of Orthogonal Matching Pursuit strategies by Backward and Forward movements," in Proc. of the 31st International Conference on Acoustics, Speech, and Signal Processing (ICASSP'06)
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching pursuit strategies", Signal Processing, Vol (86,3), 480-495 (2006)
[3] L. Rebollo-Neira, "Measurements design and phenomena discrimination",\% J. Phys. A: Math. Theor. 42 (2009)

See also OOMPKSwaps OMPKSwaps OBOMPKSwaps Swapping OOMP BOOMP OBOMP

1.2.10 OMPKSwaps

Optimized Orthogonal Matching Pursuit with k swaps
Constructs an approximation of f using OOMP and improves the approximation with KSwapping interchanging swi-pairs of atoms (swi from the approximation and swi from the dictionary) then (swi+1)-atoms and (swi+1)-atoms and so on up to sws-atoms, if tols is not reached. If the stopping criterion based on the precision tols is not reached re=0 is returned. (See KSwapping)

Usage: [re, resid, D, Di, beta, C, Q] = OOMPKSwaps (f, D);
[re, resid, D, Di, beta, C, Q] = OOMPKSwaps (f, D, err, No, ind, swi,... sws, tols);

Inputs:
f signal to be represenated
D dictionary for the space to project onto
err (optional) error of each point of f, or tolerance for the error's norm, before starting the swappings (default err=0.0001*norm(f))
No (optional) maximal number of atoms to choose, (default No=size(D,2))
ind (optional) indices determining the initial subspace
swi (optional) minimum number of atoms to be swapped, (default swi=1)
sws (optional) maximum number of atoms to be swapped, (default sws=size(beta,2))
tols (optional) tolerance for the final approximation (default 0.0000001*norm(f))

Outputs:
re convergence indicator: re=1 if the method converges within the given tols and re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first component of resid is the residual when swi atoms are swapped, the second

$$
\text { component when }(s w i+1) \text { atoms are swapped and so on. }
$$

D updated (re-arranged) dictionary, $D(:, 1: k)$ is the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal vectors to $D(:, 1: k)$
C coefficients in the expansion
Q $Q(:, 1: k)$ orthonormal basis spanning the same space as $D(:, 1: k)$ $\mathrm{Q}(:, \mathrm{k}+1:$ end) unselected atoms subtracted by their component in $\mathrm{D}(:, 1: \mathrm{k})$

References:

[1] M. Andrle and L. Rebollo-Neira, "Improvement of Orthogonal Matching Pursuit strategies by Backward and Forward movements," in Proc. of the 31st International Conference on Acoustics, Speech, and Signal Processing (ICASSP'06)
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching pursuit strategies", Signal Processing, Vol (86,3), 480-495 (2006)
[3] L. Rebollo-Neira, "Measurements design and phenomena discrimination", J. Phys. A: Math. Theor. 42 (2009)
[4] L. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach", IEEE Signal Processing Letters, Vol $(9,4), 137-140$, (2002).

1.2.11 OMPSwapping

Swapping based refinement of OMP method

```
It interchanges at each step one atom from the atomic decomposition with another atom
from the dictionary to improve the OMP approximation via adaptive biorthogonalization.
At each step it modifies the biorthogonal vectors giving rise to the duals of selected
atoms. The inputs are obtainable from the outputs of the OMP function
Usage: [ D, Di, Q, beta ] = OMPSwapping( f, D, Di, Q, beta );
Inputs:
    D dictionary, first k functions D(:,1:k) are the selected basis
    Di indices of atoms in D with respect to the original dictionary
    beta biorthogonal vectors to D(:,1:k), k=size(beta,2)
    Q orthonormal basis spanning the same space as D(:,1:k)
Outputs:
    D updated (re-arranged) dictionary, D(:,1:k) are the selected basis
    beta biorthogonal functions to D(:,1:k), k=size(beta,2)
    Di indices of atoms in D with respect to the original dictionary
    Q Q orthonormal basis spanning the same space as D(:,1:k)
```


References:

```
M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching pursuit strategies", Signal Processing, Vol 86, No 3, pp. 480-495, 2006.
```

See also OOMPSwapping, OOMPKSwaps, OMPKSwaps, OMPKSwapping

1.2.12 OOMP

Optimized Orthogonal Matching Pursuit
It creates an atomic decomposition of a signal using OOMP method [1]. You can choose a tolerance, the number of atoms to take in or an initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their component in the chosen space are also available.

Usage: [Dnew, beta, Di] = OOMP(f, D, tol);

```
                            [ Dnew, beta, Di, c, Q ] = OOMP( f, D, tol, No, ind );
Inputs:
    f signal to be represented
    D dictionary of atoms
    tol desired distance between f and its approximation the routine will stop if
    norm(f'-Dsub*(f*beta)')*sqrt(delta)<tol where delta=1/L, L is number of points
    in a sample
    No (optional) maximal number of atoms to choose, if the number of chosen atoms
    equals to No, routine will stop (default No=size(D,2))
    ind (optional) indices determining the initial subspace,
Outputs:
    D the dictionary D rearranged according to the selection process D(:,1:k)
    contains the atoms chosen into the atomic decomposition
    beta 'k' biorthogonal functions corresponding to new D(:,1:k)
    Di indices of atoms in new D written w.r.t the original D
    c 'k' coefficients of the atomic decomposition
    Q Q(:,1:k) contains orthonormal functions spanning new D(:,1:k), Q(:,k+1:N)
    contains new D(:,k+1:N) subtracted by the projection onto the space generated
    by Q(:,1:k) (resp. D(:,1:k))
```

References:
[1] L. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach",
IEEE Signal Processing Letters, Vol $(9,4), 137-140,(2002)$.
For the current implementation:
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal
matching pursuit strategies", Signal Processing, Vol 86, No 3, pp. 480-495, (2006).

See also OMP Swapping OOMPKSwaps OMPKSwaps OOMPFinalRefi BOOMP OBOMP

1.2.13 OOMPFinalRefi

refinament of OOMP by swapping and backward deleting steps.
It creates an atomic decomposition for approximation a signal using OOMP method up to a given tolerance. When possible, the sparsity is improved afterwards by a combination of swapping and backward deleting steps.

You can choose a tolerance, the maximum number of atoms in the decomposition and an initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their component in the chosen space are also available.

```
Usage: [ DO, DiO ] = OOMPFinalRefi( f, D, tol );
    [ DSO, DiO, beta0, c0,QO ] = OOMPFinalRefi( f, D, tol, No, ind);
Inputs:
    f analyzing signal
    D dictionary of normalized atoms
    tol desired distance between f and its approximation the routine will stop if
        norm(f'-Dsub*(f*beta)')*sqrt(delta)<tol where delta=1/L (L is number of points
        in a sample) or delta=1, which is the default in OOMP (to change this
        uncomment the corresponding line in OOMP)
    No (optional) maximal number of atoms to choose, if the number of chosen atoms
        equals to No, OOMP routine will stop (default No=size(D,2)
    ind (optional) indices determining the initial subspace for OOMP
    [] can be used for ind, No tol
```

```
Outputs:
    DSO the dictionary D rearranged according to the selection process DSO(:,1:k)
        contains the atoms chosen into the atomic decomposition
    DiO indices of atoms in DSO written w.r.t the original D
    Q0 Q(:,1:k) contains orthonormal functions spanning DSO(:,1:k), Q(:,k+1:N)
        contains DSO(:,k+1:N) subtracted by the projection onto the space generated
        by QO(:,1:k) (resp. DSO(:,1:k))
    beta0 'k' biorthogonal functions corresponding to new DSO(:,1:k)
    c0 'k' coefficients of the atomic decomposition
```


1.2.14 OOMPKSwapRefi

Refiment of OOMP by kswapping and backward deleting steps
It creates an atomic decomposition for approximation a signal using OOMP method up to a given tolerance. When possible, the sparsity is improved afterwards by a combination of kswapping and backward deleting steps.

You can choose a tolerance, the maximum number of atoms in the decomposition and an initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their component in the chosen space are also available.

Usage:	[DO, DiO] = OOMPKSwapRefi(f, D, tol); [DSO, DiO, QO, betaO, cO] = OOMPKSwapRefi(f, D, tol, No, ind);
Inputs:	
f	analyzing signal
D	dictionary of normalized atoms
tol	desired distance between f and its approximation the routine will stop if norm (f'-Dsub*(f*beta)')*sqrt(delta)<tol where delta=1/L (L is number of points in a sample) or delta=1, which is the default in OOMPF (to change this uncomment the corresponding line in OOMPF)
No	(optional) maximal number of atoms to choose, if the number of chosen atoms equals to No, OOMP routine will stop (default No=size(D,2)
ind	(optional) indices determining the initial subspace for OOMP
swi	(optional) minimum number of atoms to swap (defaul=1)
sws	(optional) maximum number of atoms to swap (defaul=all)
[]	can be used for sws, swi, ind, No, and tol
Outputs:	
DS0	the dictionary D rearranged according to the selection process DSO (:, $1: \mathrm{k}$) contains the atoms chosen into the atomic decomposition
Di0	indices of atoms in DSO written w.r.t the original D
beta0	'k' biorthogonal functions corresponding to new DSO(:,1:k)
c0	'k' coefficients of the atomic decomposition
Q0	$Q(:, 1: k)$ contains orthonormal functions spanning $D S O(:, 1: k), Q(:, k+1: N)$ contains $\operatorname{DSO}(:, \mathrm{k}+1: \mathrm{N})$ subtracted by the projection onto the space generated by QO (:, 1:k) (resp. DSO (:, 1:k))

1.2.15 OOMPKSwaps

Optimized Orthogonal Matching Pursuit with k swaps

[^0]```
is returned. (See KSwapping)
```

For an example on how to use OOMPKSwaps to represent a signal run de code exa_OOMPKSwaps

```
Usage: [re, resid, D, Di, beta, C, Q] = OOMPKSwaps(f, D);
 [re, resid, D, Di, beta, C, Q] = OOMPKSwaps(f, D, err, No, ind, swi,...
 sws, tols);
Inputs:
 f signal to be represenated
 D dictionary for the space to project onto
 err (optional) error of each point of f, or tolerance for the error's norm, before
 starting the swappings (default err=0.0001*norm(f))
 No (optional) maximal number of atoms to choose,(default No=size(D,2))
 ind (optional) indices determining the initial subspace
 swi (optional) minimum number of atoms to be swapped, (default swi=1)
 sws (optional) maximum number of atoms to be swapped, (default sws=size(beta,2))
 tols (optional) tolerance for the final approximation (default 0.0000001*norm(f))
Outputs:
 re convergence indicator: re=1 if the method converges within the given tols and
 re=0 otherwise
 resid vector of length sws to store the residuals at each swapping. The first
 component of resid is the residual when swi atoms are swapped, the second
 component when (swi+1) atoms are swapped and so on.
 D updated (re-arranged) dictionary, D(:,1:k) is the selected basis
 Di indices of atoms in D with respect to the original dictionary
 beta biorthogonal vectors to D(:,1:k)
 C coefficients in the expansion
 Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k), Q(:,k+1:end)
 unselected atoms subtracted by their component in D(:,1:k)
```


## References:

[1] M. Andrle and L. Rebollo-Neira, "Improvement of Orthogonal Matching Pursuit strategies by Backward and Forward movements," in Proc. of the 31st International Conference on Acoustics, Speech, and Signal Processing (ICASSP'06)
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching pursuit strategies", Signal Processing, Vol $(86,3)$, 480-495 (2006)
[3] L. Rebollo-Neira, "Measurements design and phenomena discrimination",\% J. Phys. A: Math. Theor. 42 (2009)

### 1.2.16 Swapping

Swapping based refinement of OMP methods
It interchange at each step one atom from the atomic decomposition for another atom from the dictionary to improve the signal approximation. Similarly at each step it modifies the biorthogonal vectors and the unselected atoms from the dictionary subtracted by their component from the selected space. The process is carried out until the approximation error will not increase.

Usage: [ D, Di, Q, beta ] = Swapping( f, D, Di, Q, beta );
Inputs:
D dictionary, first $k$ functions $D(:, 1: k)$ are the selected basis
Di indices of atoms in $D$ with respect to the original dictionary

```
beta biorthogonal functions to D(:,1:k), k=size(beta,2)
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k)
 Q(:,k+1:end) unselected atoms subtracted by their component in D(:,1:k)
Outputs:
 D updated (re-arranged) dictionary, D(:,1:k) are the selected basis
 beta biorthogonal functions to D(:,1:k), k=size(beta,2)
 Di indices of atoms in D with respect to the original dictionary
 Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k)
 Q(:,k+1:end) unselected atoms subtracted by their component in D(:,1:k)
```

References:
M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching
pursuit strategies", Signal Processing, Vol 86, No 3, pp. 480-495, 2006.
See also KSwapping, VFSwapping.

### 1.2.17 VFSwapping

Swapping based refinement of OMP methods (inner product implementation)


## Chapter 2

## Lq Minimization

### 2.1 Function-Summary

| ALqMin | adaptive lq like minimization | | |
|---|---|---|---|
| LqFOCUSS | solves for $x$ in $f=D x$ by minimizing the $l q^{q}$ norm by the method |
|  | FOCUSS |
| RegFOCUSS | solves for xc in $f=D x c$ by minimizing $\\|x c\\|_{q}^{q}+\operatorname{lam}(f-D x c)$ |

### 2.2 Function-Description

### 2.2.1 ALqMin

adaptive lq like minimization

```
It gives an approximated solution to an underdetermined least square problem by
minimzation of the lq`q-like quatity. The algorithm evolves by adaptive selection of a
subset of normal equations as linear constraints for the minimization process [1]. The
constrained minimization is implemented by the function LQ_FOCUSS, which applies the
FOCUSS algorithm [2].
Usage: [xc] = ALqMin(fw, U, q);
 [xc, ki, resn] = ALqMin(fw, U, q, tol, No, itmax);
Inputs:
 fw data to be modeled by fw~U*xc
 U matrix in the model above
 q specifies the value q for the lq norm
 tol the routine will stop if norm(fw-U*xc)<tol (default tol=1e-8)
 No maximum number of constraints (stopping condition) (default No=size(U,2))
 itmax maximal number of iterations for the focuss algorithsm (default itmax=30)
Outputs:
 xc solution of the lq minimization
 Nc total number of normal equations that have been considered
 resn value of norm(fw-U*xc)*sqrt(delta)
References:
 [1] L. Rebollo-Neira and A. Plastino, Nonlinear non-extensive approach for
 identification of structured information, Physica A, 2009
 [2] B.D. Rao and K. Kreutz-Delgado, An Affine Scaling Methodology for Best Basis
 Selection, IEEE Trans. Sig. Proc. 47 (1999) 187--200
```


### 2.2.2 LqFOCUSS

solves for $x$ in $f=D x$ by minimizing the $l q^{q}$ norm by the method FOCUSS

```
Usage: [xc] = LqFOCUSS (f, D, xo, q)
 [xc] = LqFOCUSS(f, D, xo, q, tol, itmax)
Inputs:
 f data modelled as f= D xc
 D matrix in the model
 xo initial solution
 q value for q in the lq norm like measure
 tol tolerance for convergence (default tol = 1e-8)
 itmax maximum number of iterations (default itmax=30)
Outputs:
 xc solution of minimum lq norm in the model f= D*xc
Reference
 [1] B.D. Rao and K. Kreutz-Delgado, An Affine Scaling Methodology for Best Basis
 Selection, IEEE Trans. Sig. Proc. 47 (1999) 187--200
```


### 2.2.3 RegFOCUSS

solves for $x c$ in $f=D x c$ by minimizing $\|x c\|_{q}^{q}+\operatorname{lam}(f-D x c)$
It applies the algorithm given in FOCUSS [1]
Usage: $\quad[\mathrm{xc}]=\operatorname{RegFOCUSS}(\mathrm{f}, \mathrm{D}, \mathrm{q})$
[xc] = RegFOCUSS( f, D, q, lam, tol, itmax, xo )

## Inputs:

f data modelled as $f=\mathrm{D} x$
D matrix in the model
$\mathrm{q} \quad$ value for q in the lq norm like measure
lam regularization parameter (default lam $=1 \mathrm{e}-8$ )
tol tolerance for convergence (default tol = 1e-8)
itmax maximum number of iterations (default itmax=30)
xo initial solution (default all the entris equal to 1)
[] can be used for itmax, tol and lam
Outputs
xo regularized solution of $f=D$ xc
References
[1] B.D. Rao, K. Engan, S. F. Cotter, J. Palmer, K. Kreutz-Delgado, Subset selection in noise based on diversity measure minimization, IEEE Transactions on Signal Processing, 51, 3 (2003) 760-- 770, 10.1109/TSP.2002.808076.

## Chapter 3

## Examples

### 3.1 Example-Summary

| exa_OBOMP | using the OBOMP function |
| :--- | :--- |
| exa_OOMPKSwaps | improves upon the OOMP approximation by k swappings |
| exa_chirp | adapted spline approximation of the chirp signal |

### 3.2 Example-Description

### 3.2.1 exa_OBOMP

using the OBOMP function
It separates the component $f v$ in $V$ from $f=f v+f w$; with $f w$ in $W C$ (uses OBOMP)

### 3.2.2 exa_OOMPKSwaps

improves upon the OOMP approximation by k swappings
Creates a cardinal B-spline dictionary and a the signal $f$ as a random superposition of 95 splines. Calls OOMP_KSWAPS (which uses KSwapping) to improve the OOMP approximation by k swappings, untill tols=1e-9*norm(f) is reached.

### 3.2.3 exa_chirp

adapted spline approximation of the chirp signal
This example generates a nonuniform spline space adapted to a chirp signal and constructs a dictionary for sparse approximation of the chirp through refinements of OOMP and OMP approaches.

## Part II

## Projectors and Duals

## Chapter 4

## Projectors

### 4.1 Function-Summary

| ObliProj | constructs an oblique projection matrix onto the span of the columns of <br> V along the span of the columns of Wperp |
| :--- | :--- |
| OptObliProj | regularizes the oblique projector of a give signal by truncation of singular <br> values |
| OrthProj | construct an orthogonal projection matrix onto the span of the columns <br> of D. |
| RegObliProj | regularizes the oblique projection of a given noisy signal by truncation <br> of singular valueas |

### 4.2 Function-Description

### 4.2.1 ObliProj

constructs an oblique projection matrix onto the span of the columns of V along the span of the columns of Wperp

```
for opt=[1,1] computes the projector as E=V*W, where W=pinv(U'*V)*U'
 with U=V-orth_proj_{Wperp} V
for opt=[2,1] computes the projector as E=V*W, where W=pinv(U'*U)*U'
 with U=V-OrthProj_{Wperp} V
for opt=[3,1] computes the projector as E=V*W, where W=pinv(U)'
 with U=V-OrthProj_{Wperp} V
for opt=[1,2] computes the projector as E=V*W, where W=pinv(Q'*V)*Q'
 with U=V-OrthProj_{Wperp} and Q=DREOr(U)
for opt=[1,3] computes the projector as E=V*W, where W=pinv(Q'*V)*Q'
 with U=V-OrthProj_{Wperp} and Q=qr(U)
for opt=[1,4] computes the projector as E=V*W, where W=pinv(Q'*V)*Q'
 with U=V-OrthProj_{Wperp} and Q=orth(U)
for opt=[2,2] computes the projector as E=V*W, where W=pinv(Q'*U)*Q'
 with U=V-OrthProj_{Wperp} and Q=DREOr(U)
for opt=[2,3] computes the projector as E=V*W', where W'=pinv(Q'*U)*Q'
 with U=V-OrthProj_{Wperp} and Q=qr(U)
```

```
for opt=[2,4] computes the projector as E=V*W', where W'=pinv(Q'*U)*Q'
 with U=V-OrthProj_{Wperp} and Q=orth(U)
Usage: [W, U, E] = ObliProj(V, Wperp, opt, tol, ind);
 [W, U, E] = ObliProj(V, Wperp);
Inputs:
 V matrix the columns of which span then space to project onto
 Wperp matrix the columns of which span then space to project along
 opt array to chose the method to calculate the projector (see above) default
 opt=[3,1]
 tol if opt=[1,2], or [2,2] tol is the torance set for considering linearly
 independent columns [default tol= 1.0000e-7]
 ind (optional) the indices of vectors to start the orthogonalization (see DREOr)
 [] can be used for ind, tol and opt
Outputs:
 W matrix producing E=U*W;
 U matrix producing E=U*W;
 E Projector onto span of columns of V onto columns of Wperp
see orth DREOrp DREOr qr
```


### 4.2.2 OptObliProj

regularizes the oblique projector of a give signal by truncation of singular values
The projection of $f$ onto span of $V$ along span of $W C$ is regularized by truncation of singular values- the number of singular values is decided by minimizing:

$$
\left\|P \_W f,-\quad P_{-} W E_{-}\{V W C\} f{ }^{\prime}\right\|
$$

where $P_{-} W$ is the orthogonal projector onto $W$ (the orthogonal complement of span WC) and $\mathrm{E}_{-}\{\mathrm{V}, \mathrm{WC}\}$ ) is the oblique projector onto span V along span WC.

```
Usage: [fe, c, lm] = OptObliProj(D, WC, f, opt, eps);
 [fe, c, lm] = OptObliProj(D, WC, f);
Inputs:
 V matrix, the columns of which span the space to project onto
 WC matrix, the columns of which span the space to project along
 f vector, with signal to be projected
 opt equivalent role as in ObliProj and (for details see there) but some of them
 may not always be good here default opt=[3,1].
 eps minimum eigenvalue to be considered nonzero
 [] can be used for eps or/and opt
Outputs:
 fe regularized oblique projection of f
 c coefficients in the decomposition fe=V*c
 lm resulting number of nonzero eigenvalues to calculate fe
See also ObliProj RegObliProj OrthProj
```


### 4.2.3 OrthProj

construct an orthogonal projection matrix onto the span of the columns of $D$.

```
for opt=1 it uses the matlab function orth to orthogonalize D
for opt=2 it uses the routine DREOrp (recommended when the columns of D are quasi
 Linearly Dependent up tolerance tol, see DREor)
for opt=3 it uses the QR decomposition matlab function.
Usage: [P, Q] = OrthProj(D, opt, tol, ind);
 [P, Q] = OrthProj(D);
Inputs:
 D matrix the columns of which is a dictionary of normalized atoms
 opt to chose the method to calculate the projector (see above) default for opt=3
 tol (optional) the tolerance set for considering linearly dependant columns
 [default tol = 1.0000e-7]
 ind (optional) the indices of vectors to start the orthogonalization (see DreOr)
Outputs:
 Q Orthogonal vectors such that P=Q*Q'
 P Projector onto span of the columns of Q
See also DREOrp DREOr qr orth
```


### 4.2.4 RegObliProj

regularizes the oblique projection of a given noisy signal by truncation of singular valueas

```
The regularization tries to fulfill:
```

```
||P_W f' - P_W E_{VWC}f'||\le || P_W err'||,
```

where $P_{-} W$ is the orthogonal projector onto $W$ (the orthogonal complement of span WC) and
$E_{-}\{V, W C\}$ is the oblique projector onto span $V$ along span $W C$.
Usage: $\quad[f e, c, l m]=$ RegObliProj( D, WC, f, err, opt, No );
[ fe, c, lm ] = RegObliProj( D, WC, f );
Inputs:
V matrix, the columns of which span the space to project onto
WC matrix, the columns of which span the space to project along
f vector, with signal to be projected
opt equivalent role as in ObliProj (for details see there) default opt=[1,2] (with
tol_orth $=1 \mathrm{e}-7$ for DREOr)
err (optional) error of each point of $f$, or tolerance for the error's norm default
err=ones(size(f))*5e-7
No maximum number of eigenvalues to consider default all
[] can be used for err, opt, or No
Outputs:

```
fe regularized oblique projection of f
 c coefficients in the decomposition fe=V*c
 lm resulting number of nonzero eigenvalues to calculate fe
```


## Chapter 5

## Duals

### 5.1 Function-Summary

| BioBack | deletes the requested vector j from a given basis taken from a dictionary | | |
|---|---|---|---|
| BioDictDel | deletes a vector from a basis selected from a given dictionary and appro- <br> priately modifies biorthogonal functions, orthonormal functions span- <br> ning the same space as the basis, and unselected dictionary atoms sub- <br> tracted by their components in the selected basis. |
| BioDictIns | enlarges a basis selected from a given dictionary by one vector |
| BioFor | enlargers the dual/biorthogonal basis enlarger by one vector |
| BioInsert | adds an atom to a basis. It also appropriately modifies the corresponding <br> biorthogonal basis and orthonormal basis (obtained by modified Gram- <br> Schmidt). |
| DRE | Dictionary Redundancy Elimination <br> DREOr <br> uses DRE method to produce and orthogonal basis from a dictionary <br> and gives dictionary's indices of the atoms spannig the space. <br> DREOrp <br> uses Dre method to produce and orthogonal basis from a dictionary. <br> FrDeletedeletes the requested vector from a given frame <br> FrInsert <br> adds a vector to a frame. It also appropriately modifies the correspond- <br> ing dual frame. <br> FrInsertBlock <br> adds vectors to a basis and gives the duals spanning the same space <br> NBioDictInsenlarges a basis selected from a given dictionary by one vector. It mod- <br> ifies the biorthogonal basis for the same space and gives the projection <br> of the remainding atoms onto the orthogonal complementary space | | adds an atom to a basis and modifies the biorthogonal basis for the same |
| :--- |
| space |

### 5.2 Function-Description

### 5.2.1 BioBack

deletes the requested vector j from a given basis taken from a dictionary

```
Modifies the corresponding biorthogonal basis and orthonormal basis (obtained by
modified Gram-Schmidt) and retuned the re-ordered dictionary (this is the only diference
with biodelete, which does not deal with the whole dictionary).
Usage: [D, psin, beta] = BioBack(D, psin, beta, j);
Inputs:
 D Dictionary, first kb vectors D(:,1:kb) are the selected basis
```

```
 psin orthonormal basis spanning the same space as D(:,1:kb) kb=size(psin,2
 beta biorthogonal basis to D(:,1:kb), kb=size(beta,2)
 j
 index of function to eliminate
Outputs:
 D updated (rearranged) dictionary (D(:,1:kb-1) is the new basis)
 psin updated orthonormal basis spanning the same space as D(:,1:kb-1)
 beta updated biorthogonal basis to D(:,1:kb-1)
```


## References:

```
 L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
 math-ph/0209026 (2002).
```

See also NBioDelete, NBioDictDel, BioDictDel.

### 5.2.2 BioDictDel

deletes a vector from a basis selected from a given dictionary and appropriately modifies biorthogonal functions, orthonormal functions spanning the same space as the basis, and unselected dictionary atoms subtracted by their components in the selected basis.

```
The dictionary is then rearranged to have one to one correspondence with beta (dual
functions) and psin.
Usage: [D, psin, beta] = BioDictDel(D, psin, beta, j);
Inputs:
 D dictionary, first kb functions are the selected basis
 psin psin(:,1:kb) orthonormal functions spanning the same space as D(:,1:kb)
 psin(:,kb+1:end)=D(:,kb+1:end) without component from D (:,1:kb)
 beta kb biorthogonal functions to D(:,1:kb), kb=size(beta,2)
 j index of function to eliminate
Outputs:
 D updated (rearranged) dictionary
 psin psin(:,1:kb-1) updated (recalculated) orthonormal functions spanning the same
 space as the chosen atoms psin(:,kb:end) updated (recalculated) unchosen
 dictionary atoms subtracted by their components in the selected basis.
 beta updated biorthogonal functions to D(:,1:kb-1)
```

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).
See also: NBioDictDel, BioDelete, NBioDelete.

### 5.2.3 BioDictIns

enlarges a basis selected from a given dictionary by one vector
It appropriately modifies the biorthogonal functions and unselected dictionary atoms subtracted by their components in the selected basis. It also updates the set of orthonormal functions spanning the same space as chosen atoms.

Usage: [ Q, beta ] = BioDictIns( D, Q, beta, k );
Inputs:
D dictionary, rearranged in such way that $D(:, 1: k-1)$ are the selected atoms

```
 D(:,k) is the atom to add into the basis
 Q Q(:,1:k-1)= orthonormal basis to D(:,1:k-1) Q(:,k:end)=D(:,k:end) without
 component from D(:,1:k-1)
 beta biorthogonal functions to D(:,1:k-1)
 k k-th atom of D to incorporate it says that first k-1 atoms are already in
 basis
```

Outputs:

```
Q Q(:,1:k)= orthonormal basis to D(:,1:k) Q(:,k+1:end)=D(:,k+1:end) without
 component from D(:,1:k)
beta updated biorthogonal functions to D(:,1:k)
```

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors", math-ph/0209026 (2002).

See also NBioDictIns, BioInsert, NBioInsert.

### 5.2.4 BioFor

enlargers the dual/biorthogonal basis enlarger by one vector
It modifies the biorthogonal basis and updates the set of orthonormal vectors spanning the same space as the the enlaged basis.

Usage: $\quad[\mathrm{Q}$, beta $]=\operatorname{BioFor}(\mathrm{D}, \mathrm{Q}$, beta, k$)$;
Inputs:
D dictionary, rearranged in such way that $D(:, 1: k-1)$ are the basis vectors and $D(:, k)$ is the atom to add into the basis
Q $\quad Q(:, 1: k-1)=$ orthonormal basis for the span of $D(:, 1: k-1)$
beta biorthogonal basis to $D(:, 1: k-1)$
$\mathrm{k} \quad \mathrm{k}$-th element of D to incorporate in the basis it implies that the first $\mathrm{k}-1$ vectors are already in the basis

Outputs:
Q $\quad \mathrm{C}(:, 1: k)=$ orthonormal basis for span of $D(:, 1: k)$
beta updated biorthogonal basis to $D(:, 1: k)$
References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors", math-ph/0209026 (2002).

See also NBioDictIns, BioInsert, NBioInsert

### 5.2.5 BioInsert

adds an atom to a basis. It also appropriately modifies the corresponding biorthogonal basis and orthonormal basis (obtained by modified Gram-Schmidt).

```
Usage: [D, psin, beta] = BioInsert(D, psin, beta, atom, tol);
Inputs:
 D already selected basis
 psin orthonormal basis spanning the same space as D
 beta biorthogonal basis to D
 atom new atom to be incorporated into basis
 tol tolerance (optional parameter) to decide linear dependence default value =
```

```
Outputs:
 D updated basis
 psin updated orthonormal basis spanning the same space as D
 beta updated biorthogonal functions to D
```

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).
See also NBioInsert, NBioDictIns, BioDictIns.

### 5.2.6 DRE

Dictionary Redundancy Elimination

```
With help of column pivoting it tries to choose a stable basis from a given
```

dictionary.

```
Usage: [Dnew, Di, Q, beta] = DRE(D, tol, ind);
```

            [ Dnew, Di ] = \(\operatorname{DRE}(\mathrm{D})\);
    Inputs:
D dictionary of normalized atoms
tol tolerance set for considering as linearly dependent atom [default tol=
1.0000e-7]
ind (optional) indices determining the initial subspace
[] can be used for tol and ind
Outputs:
D sub-dictionary extracted from D containing linearly independent
atoms
Di indices of atoms in new D w.r.t to original D
Q orthonormal functions spanning the same space as new $D$
beta biorthogonal functions to new D
References:
L. Rebollo-Neira, "Dictionary redundancy elimination", IEE Proceedings - Vision, Image
and Signal Processing, Vol(151,1), 31-34 (2004).
See also DREOr DREOrp Biorthog.

### 5.2.7 DREOr

uses DRE method to produce and orthogonal basis from a dictionary and gives dictionary's indices of the atoms spannig the space.

The difference with DREOrp is that it gives Di (see below)

Implement column pivoting to choose a stable orthogonal basis from a given set, which could be redundant, called "dictionary"

Usage: $\quad[\mathrm{Q}, \mathrm{Di}]=\operatorname{DREOr}(\mathrm{D}, \mathrm{tol}$, ind $)$;
[ Q, Di ] = DREOr ( D, tol );
[ Q, Di ] = $\operatorname{DREOr}(\mathrm{D})$;
Inputs:

```
 D matrix the columns of which is a dictionary of normalized atoms
 tol tolerance set for considering as linearly dependent columns [default tol=
 1.0000e-7]
 ind (optional) indices determining the initial subspace
 [] can be used for tol and ind
Outputs:
 Q orthonormal vectors spanning the same space as D (up to tol)
 Di indices of linearly independent atoms that have been orthogonalized
References:
 L. Rebollo-Neira, "Dictionary redundancy elimination", IEE Proceedings - Vision, Image
 and Signal Processing, Vol(151,1), 31-34 (2004).
See also DRE DREOrp and Biorthog
```


### 5.2.8 DREOrp

uses Dre method to produce and orthogonal basis from a dictionary.

```
The only difference with DREOr is that this only gives Q so it is a bit faster
implement column pivoting to choose an stable orthogonal basis from a given set, which
could be redundant, called "dictionary"
Usage: [Q] = DREOr(D, tol, ind);
 [Q] = DREOr(D);
Inputs:
 D matrix the columns of which is a dictionary of normalized atoms
 tol tolerance set for considering as linearly dependent columns [default tol=
 1.0000e-7]
 ind (optional) indices determining the initial subspace
 [] can be used for tol and ind
Outputs:
 Q orthonormal vectors spanning the same space as D, up to tolerance tol
References:
 L. Rebollo-Neira, "Dictionary redundancy elimination", IEE Proceedings - Vision, Image
 and Signal Processing, Vol(151,1), 31-34 (2004).
See also DREOr DRE
```


### 5.2.9 FrDelete

deletes the requested vector from a given frame

```
It appropriately modifies the corresponding duals "beta", the updating
depends on whether the vector "num" belongs to the remaining frame or not
Usage: [D,beta]=nfrdelete(D,beta,num);
Usage: [D,beta]=nfrdelete(D,beta,num,ic);
Inputs:
 D frame
 beta dual frame
 num index of the vector to be eliminated
```

ic = 1 if linearly independent (linearly dependent otherwise)

Outputs:
D reduced frame
beta updated dual frame (for the reduced D)
References:
L. Rebollo-Neira, ' Constructive updating/downdating of oblique projectors: a generalization of the Vol(40), 6381-6394 (2007).

See http://www.ncrg.aston.ac.uk/Projects/HNLApprox/ for more details

### 5.2.10 FrInsert

adds a vector to a frame. It also appropriately modifies the corresponding dual frame.

```
Usage: [D,beta]=nfrinsert(D,beta,atom,tol);
Inputs:
 D frame
 beta dual frame to D
 atom new vector to be incorporated into the frame
 tol tolerance (optional parameter) to decide linear dependence
 default value = 1.0000e-7
 dual if atom is linearly dependent dual is an arbitrary vector
 default dual=atom
Outputs:
 D updated frame
 beta updated dual frame of D
References:
 [1] L. Rebollo-Neira, ''Constructive updating/downdating of oblique projectors: a generalization of
Journal of Physics A: Mathematical and Theoretical}, Vol(40), 6381-6394 (2007)
This routine is equivalent to NBioInsert if the new atom is independent
see http://www.ncrg.aston.ac.uk/Projects/HNLApprox/
```


### 5.2.11 FrInsertBlock

adds vectors to a basis and gives the duals spanning the same space

```
Usage: [D,beta]=FrInsertBlock(D,beta,gb,tol);
Inputs:
 D basis
 gb new vectors to be incorporated into the basis
 tol tolerance (optional parameter) to decide linear dependence
 default value = 1.0000e-7
Outputs:
 D updated basis
 beta updated biorthgonal basis
or http://www.ncrg.aston.ac.uk/Projects/HNLApprox/
```


### 5.2.12 NBioDictIns

enlarges a basis selected from a given dictionary by one vector. It modifies the biorthogonal basis for the same space and gives the projection of the remainding atoms onto the orthogonal complementary space

```
Usage: lambda = NBioDictIns(D, lambda, k);
Inputs:
 D dictionary, D(:,1-k-1) is the selected basis
 lambda lambda(:,1:k-1)=biorthogonal functions to D(:,1:k-1)
 lambda(:,k:end)=D(:,k:end) without component from D(:,1:k-1)
 k k-th atom of D to incorporate it says that first k-1 atoms are already in
 basis
Outputs:
 lambda lambda(:,1:k)=biorthogonal functions to D(:,1:k)
 lambda(:,k+1:end)=D(:,k+1:end) without component from D (:, 1:k)
References:
 L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
 math-ph/0209026 (2002).
Note: the difference between this routine and BioDictIns is that in this routine the
orthonormal basis spanning D(:,1:k) is not available
See also BioDictIns, BioInsert, NBioInsert.
```


### 5.2.13 NBioInsert

adds an atom to a basis and modifies the biorthogonal basis for the same space

```
Usage: [D, beta] = NBioInsert(D, beta, atom, tol);
Inputs:
 D already selected basis
 beta biorthogonal functions to D
 atom new atom to be incorporated into basis
 tol tolerance (optional parameter) to decide linear dependence default value =
 1.0000e-7
Outputs:
 D updated basis
 beta updated biorthogonal functions to D
References:
 L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
 math-ph/0209026 (2002).
See also BioInsert, NBioDictIns, BioDictIns.
```


## Chapter 6

## Examples

### 6.1 Example-Summary

| exa_ObliProj | using ObliProj |
| :--- | :--- |
| exa_OptObliProj | using OptObliProj |
| exa_RegObliProj | using RegObliProj |

### 6.2 Example-Description

### 6.2.1 exa_ObliProj

using ObliProj
Separates the components $f_{\_} v$ in $V$ from $f=f \_v+f \_W$ with $f_{-} w$ in WC.

### 6.2.2 exa_OptObliProj

using OptObliProj
Separates the component $f v$ in $V$ from $f=f v+f w$; with $f w$ in $W C$.

### 6.2.3 exa_RegObliProj

using RegObliProj
Separates the component $f v$ in $V$ from $f=f v+f w$; with $f w$ in $W C$.

## Part III

## Image Processing Tools

### 6.3 Function-Summary

| CalcPSNR | returns the PSNR between the original image and its approximation |
| :--- | :--- |
| DCos | generates a matrix whos columns are discrete cosine vectors. |
| DetectLines | returns the index of vertical impulsive lines in an image |
| GenerateHats | Generates a hat dictionary |
| GenerateTrapezium | generates a vector representing a trapezium |
| ImageApproximation | Returns an approximation of an image generated by choosing atoms from <br> dictionary using either thresholding or a greedy algorithm. |
| RemoveDependantAtoms | removes any dependant atoms from a given dictionary |
| TranslatePrototype | translates a vector to construct either a dictionary or a basis |

### 6.4 Function-Description

### 6.4.1 CalcPSNR

returns the PSNR between the original image and its approximation
Calculates the Peak Signal to Noise Ratio (PSNR) between 2 matrices containing pixel intensity values.

Usage: $\quad$ psnr $=$ CalcPSNR ( mImage1, mImage2 );
Inputs:
mImage1 matrix of pixel intensity values representing the original image
mImage2 matrix of pixel intensity values representing the approximated image maxIntensity maximum allowed pixel intensity, defualt is 256 (8 bit image)

Outputs:
psnr the PSNR resulting from the approximation

### 6.4.2 DCos

generates a matrix whos columns are discrete cosine vectors.
Returns discrete cosine vectors that belong to the Euclidean space of size szSpace. The deafult is to return a basis for the space.

```
Usage mCosines = DCos(szSpace, nFrequencies, redundancy);
mCosines = DCos(szSpace, nFrequencies);
mCosines = DCos(szSpace);
```

Inputs:
szSpace the size of the Euclidean space the vectors should belong to
nFrequencies number of frequencies to use starting from 0. If not specified will
be the same as the size of the space
redundancy redundancy of the dictionary, the default is 1 (basis)
Outputs:
mCosines matrix whos columns are discrete cosine vectors.

### 6.4.3 DetectLines

returns the index of vertical impulsive lines in an image
Searches a matrix representing the pixel intensities of an image for columns where all the values are equal to lineValue. Note this will also return the index of vertical
edges.

```
Usage: iLine = DetectLines(mImage, lineValue);
 iLine = DetectLines(mImage);
Inputs:
 mImage double matrix representing image pixel intensities
 lineValue value to search for default is 0.
Outputs:
 iLine vector containing the index's of the columns of mImage containing vertical
 lines
```


### 6.4.4 GenerateHats

Generates a hat dictionary
Builds a dictionary for a space of size szSpace from one or more hat dictionaries or basis, where the length of there support is given in the vectot hats.

```
Usage: mHatDictionary = GenerateHats(hats, szSpace, dictionary);
Inputs:
 hats vector of support lengths for each dictionary
 szSpace number of discrete points in each atom
 dictionary set to 0 if the dictionary is composed from several hat basis, or 1 if
 it is composed from several hat dictionaries
Outputs:
 mHatDictionary matrix whose columns are the atoms fromt he hat dictionaries
```


### 6.4.5 GenerateTrapezium

generates a vector representing a trapezium
Generates a discrete vector of points representing the vertical distance between the base of an isosceles trapezium and the other three sides. You choose the length of the trapeziums base, this will 2 less than the size of vTrapezium as the base values are zero. You also choose the length of the trapeziums top.

```
Usage: vTrapezium = GenerateTrapezium(lBase, lTop);
 vTrapezium = GenerateTrapezium(lBase);
Inputs:
 lBase number of discrete points for the trapeziums base
 lTop number of discrete points for the trapeziums top, the default is 1
Outputs:
 vTrapezium column vector of points representing the vertical distance between
 the base of an isosceles trapezium and the other three sides.
```

See also TranslatePrototype

### 6.4.6 ImageApproximation

Returns an approximation of an image generated by choosing atoms from dictionary using either thresholding or a greedy algorithm.

```
Usage: [mImageApprox, mNCn, mCn, mICn, actualPSNR, processingTime, ...
 mError] = ImageApproximation(mImage, mAtoms, algorithm, ...
 criteria, blockWidth);
Inputs:
 mImage the matrix of pixel intensity values
 mAtoms matrix whos columns are the atoms from the dictionary we use to
 approximate the image with
 algorithm name of the algorithm to use
 criteria the target psnr between the original image and its approximation if using
 a greedy algorithm or the threshold if using Thresholding
 blockWidth width of the square blocks that the image will be processed in
Outputs:
 mImageApprox
 mNCn
 mICn array containing the index's of the retained coefficients
 actualPSNR psnr between the original image and its approximation
 processingTime time in seconds to process the image
 mError matrix containing the norm of the error between the original image and
 the approximated image for each block processed.
```


### 6.4.7 RemoveDependantAtoms

removes any dependant atoms from a given dictionary

```
Normalises the dictioanry and then removes any atoms that have an inner product of
within tol of 1.
Usage: [mUniqueDictionary iRemovedAtoms] = RemoveDependantAtoms(...
 mDictionary, tol);
[mUniqueDictionary iRemovedAtoms] = RemoveDependantAtoms(. . .
 mDictionary);
Inputs:
 mDictionary dictionary of atoms
 tol tolerance of how similar atoms can be, default is 1e-13
Outputs:
 mUniqueDictionary dictionary with dependant atoms removed
 iRemovedAtoms index of the dependant atoms
```


### 6.4.8 TranslatePrototype

translates a vector to construct either a dictionary or a basis

```
Constructs a matrix whos columns are vectors forming either a redundant dictionary
or a basis for the Euclidean space of dimension szSpace. Each vector is generated
by translating one point at a time the discrete values contained in vPrototype,
i.e.
szSpace = 3;
vPrototype = [1];
mVectors = [1 0 0;
 0 1 0;
 0 0 1];
```

```
If dictionary is not specified or set to 1 we apply the 'cut off' approach to
create a dictionary for the space i.e.
dictionary = 1;
szSpace = 3;
vPrototype = [1 1 1];
mVectors = [1 0 0;
 1 1 0;
 0 1 1;
 0}001
If dictionary is set to 0 we adopt cyclic boundry conditions to create a basis for
the space, i.e.
dictionary = 0;
szSPace = 3;
vPrototype = [lll}11]
mVectors = [1 1 0;
 0 1 1;
 1 0 1];
Usage: mVectors = TranslatePrototype(vPrototype, szSpace, dictionary);
mVectors = TranslatePrototype(vPrototype, szSpace);
Inputs:
 vPrototype vector representing the shape to be translated.
 szSpace size of the Euclidean space we want to span.
 dictionary 0 to generate a basis and 1 to generate a redundant dictionary for
 the space, the default is to generate a dictionary.
Outputs:
 mVectors matrix whos columns span the space of dimension szSpace
See also GenerateTrapezium
```


### 6.5 Examples

### 6.6 Example-Summary

| exa_image_approximation | approximating an image using OMP |
| :--- | :--- |
| exa_impulse_removal | Elimination of random lines from an image using the function OOMP- <br> FinalRefi() |

### 6.7 Example-Description

### 6.7.1 exa_image_approximation

approximating an image using OMP
Example of using the OMP algorithm to approximate the image of Lena using a dictionary comprised from a deiscrete cosine redundancy 2 dictionary and hat dictionaries of support 1, 3 and 5.

### 6.7.2 exa_impulse_removal

Elimination of random lines from an image using the function OOMPFinalRefi()

```
Removes random vertical lines from an image by projecting onto atoms chosen from a
```

spline wavelets dictionary using OOMPFinalRefi(). Construct the Spline Wavelet Dictionary

## Part IV

## Spline Dictionaries

## Chapter 7

## Uniform

### 7.1 Function-Summary

| BSpline | gives the analytical form of k-th B-spline of order m on l-th subinterval <br> of given partition t |
| :--- | :--- |
| DictSpline | generates dictionary of cardinal B-spline functions of order m |
| Differ | calculates $(\mathrm{s}-1)$-th divided difference of $\left.\max \left((t-x)^{( } m-1\right), 0\right)$ where $s$ <br> is the number of knots in sequence $t$ (i.e., $\mathrm{s}=$ length $(\mathrm{t}))$ |
| ErrorTest | tests orthogonality of a sequence or biorthogonality of two sequences. |
| Green | calculates $\left(x_{+}\right)^{m}=x^{m}$ for $x>=0$ (it is 0 for $\left.x<0\right)$. This functions is <br> known as truncated powers. |
| NormDict | normalizes a given dictionary |
| SplineLevel | generates a B-spline dictionary depending on given parameters |
| SymSpline | gives the analytical form of B-spline of order m with knots in partition t |
| TSpline | generates B-spline basis of order m corresponding to knot sequence t |

### 7.2 Function-Description

### 7.2.1 BSpline

gives the analytical form of $k$-th B-spline of order $m$ on l-th subinterval of given partition $t$

```
Usage: f = BSpline(m, k, l, t);
 f = BSpline(m, k, l);
Inputs:
 m order of spline (m>=1), m=1 is a piecewise constant function
 k specifies the index of spline, B-spline living on on I=[t(k),t(k+m)] is
 calculated if the sequence of knots }t\mathrm{ is not defined then
 I=t (k:k+m)=[k-1,k-1+m]
 l specifies the interval [t(l),t(l+1)] on which the k-th B-spline is studied
 t sequence of knots (optional)
 if t is a single number then the sequence is considered to be t:t+m
 if t not specified then t=k-1:k-1+m
Output:
 f analytical form of k-th B-spline of order m on l-th subinterval of t
References:
 L.L. Schumaker, Spline Functions: Basic Theory, New York, Wiley, 1981.
```

Remark: It is not recommended to use this procedure by user. You can do the same using SymSpline.

### 7.2.2 DictSpline

generates dictionary of cardinal B-spline functions of order $m$

```
Usage: D = DictSpline(m, L, sp, b1, b2, type);
Inputs:
 m order of spline functions (m>=1), m=1 is a piecewise constant function
 L number of discrete points
 sp vector [sp(1),sp(2)] specifying the interval
 b1 coarser partition of sp, points sp(1)+k*b1, k=0
 b2 finer partition of sp, points sp(1)+k*b2, k=0
 type either ESEP or EPKB
Output:
 D dictionary of cardinal B-spline functions of order
Remark: This procedure uses the translation property of inner cardinal B-splines.
 It calls the routine SplineLevel to do the job.
```


### 7.2.3 Differ

calculates (s-1)-th divided difference of $\left.\max \left((t-x)^{( } m-1\right), 0\right)$ where $s$ is the number of knots in sequence $t$ (i.e., $\mathrm{s}=\operatorname{leng} \mathrm{th}(\mathrm{t})$ )

```
Usage: f = Differ(x, t, m);
Inputs:
 x dicrete variable
 t knot sequence
 m order
Output:
 f (s-1)-th divided difference of max((t-x) (m-1),0)
Remark: Sequence t must be ordered.
```


### 7.2.4 ErrorTest

tests orthogonality of a sequence or biorthogonality of two sequences.

```
Usage: errortest(D, beta);
errortest(Q);
Inputs:
 D sequence of vectors
 beta (optional) biorthogonal sequence
Output:
 f orthogonality of D or biorthogonality D w.r.t beta
```


### 7.2.5 Green

calculates $\left(x_{+}\right)^{m}=x^{m}$ for $x>=0$ (it is 0 for $x<0$ ). This functions is known as truncated powers.

```
Usage: f = Green(x, m);
```

Inputs:
$\mathrm{x} \quad$ discrete variable

## Output:

$\mathrm{f} \quad\left(\mathrm{x}_{-}+\right)^{\wedge} \mathrm{m}$ (see definition of this above)

## References:

L.L. Schumaker, Spline Functions: Basic Theory, New York-Wiley, 1981.

### 7.2.6 NormDict

normalizes a given dictionary

```
Usage: D = NormDict(D, delta);
 D = NormDict(D);
Inputs:
 D non-normalized dictionary
 delta parameter, the discrete norm of D is multiplied by sqrt(delta)
 (default value is 1)
Outputs:
 D normalized dictionary
```

Remark: It normalizes the columns of matrix D.

### 7.2.7 SplineLevel

generates a B-spline dictionary depending on given parameters

```
Usage: D = SplineLevel(m, x, b1, b2, type);
Inputs:
 m order of splines
 x discrete variable
 b1 coarser partition of sp, points sp(1)+k*b1, k=0
 b2 finer partition of sp, points sp(1)+k*b2, k=0
 type either ESEP or EPKB
Output:
 D dictionary of spline functions
```

References:
M. Andrle and L. Rebollo-Neira, "Cardinal B-spline dictionaries on a compact
interval", Applied and Computational Harmonic Analysis, Vol(18,3), 336-346 (2005).

### 7.2.8 SymSpline

gives the analytical form of B-spline of order $m$ with knots in partition $t$

```
Usage: [f, p] = SymSpline(m, t);
 [f, p] = SymSpline(m);
```

Inputs:
$m \quad$ order of spline ( $m>=1$ ), $m=1$ is a piecewise constant function
$t$ sequence of knots (optional)

```
 if t is a single number then the sequence is considered to be t:t+m
 if t not specified, t=0:m
Outputs:
 f array of m symbolical polynomials, each polynomial describes the desired
 B-spline on the subinterval [t(i),t(i+1)], i=1,\ldots,m
 p matrix of coefficients for polynomials expressed in f,
 each row in this matrix represents a_{m-1}, ..., a_0 for
 polynomials written as a_{m-1}x^{m-1}+....+ a_0
Remark: If length of t is bigger than m+1, this procedure takes in account
 only first m+1 knots of }
References:
 L.L. Schumaker, Spline Functions: Basic Theory, New York, Wiley, 1981.
```


### 7.2.9 TSpline

generates B-spline basis of order $m$ corresponding to knot sequence $t$

```
Usage: D = TSpline(x, t, m);
Inputs:
 x variable range (discrete points)
 t knot sequence (could be multiple knots)
 m order of splines (m=1 means a piecewise constant functions)
Output:
 D B-spline function basis corresponding to knot sequence t
Remark: The sequence t is sorted before calculation.
References:
 L.L. Schumaker, Spline Functions: Basic Theory, New York, Wiley, 1981.
```


## Chapter 8

## Non Uniform

### 8.1 Function-Summary

| CutDic | produces a non-uniform B spline dictionary |
| :--- | :--- |
| NonBSpline | Computes the value of B spline basis at x0 by the recurrence formula for <br> the non-uniform B spline. |
| NonUniB | computes all non-unfirom B spline over the partition 'p' |
| ProducePartition | using the curvature of the signal f, it compute the knots of a partition |

### 8.2 Function-Description

### 8.2.1 CutDic

produces a non-uniform B spline dictionary

```
Usage: D = CutDic(partition, m, L, level);
Inputs:
 partition a partition to produce a non-uniform B spline dictionary (it can be
 computed by the function 'producepartition')
 m the order of the spline
 L the number of the sampling of the functions
 level it is related with the width of the B spline basis. When level=1, the
 function outputs the B spline basis.
Outputs:
 D the non-uniform B spline dictionary (matrix)
```


### 8.2.2 NonBSpline

Computes the value of B spline basis at x 0 by the recurrence formula for the non-uniform B spline.

```
Usage: re = NonBSpline(m, t, x0);
Inputs:
 m the order of splines
 t the partition (the number of entris in t is m+1)
 x0 the point for computing
Outputs:
 re the value of B spline at x0
```


### 8.2.3 NonUniB

computes all non-unfirom B spline over the partition 'p'

```
Usage: D = NonUniB(a, b, m, p, L);
Inputs:
 a,b the end points of the interval
 m the order of the spline
 p the partition
 L the number of the sampling of the functions
```

Outputs:
D the non-uniform B spline over the partition $p$ (matrix, $D(:, j)$ denots jth
$B$ spline basis)

### 8.2.4 ProducePartition

using the curvature of the signal f , it compute the knots of a partition

```
Usage: partition = ProducePartition(a, b, f, cut);
Inputs:
 a,b the end points of the interval
 f signal
 cut sub-divided level of the partition.
Outputs:
 partition the knots of the partition. The first entry is a and the last one is b
```


## Chapter 9

## Wavelets

### 9.1 Function-Summary

| BuildDict | helps you to construct a multiresolution-like spline wavelet dictionary or <br> a B-spline dictionary |
| :--- | :--- |
| ElimBound | eliminates redundant boundary wavelets to have a basis for the cut-off <br> spline wavelet dictionary constructed with b=1 |
| GDictFast | generates dictionaries by translating prototype functions |
| NumFun | states how many functions $f\left(a^{j} * x-b * k\right)$, where $k$ is an integer, have <br> non-trivial intersection with the interval $[c, d]$ |
| SPL | generates B-splines of order m at scale $j$ with translation parameter $k$, <br> $B\left(a^{j} * x-k\right)$. Multiple knots for construction boundary functions are <br> considered. |
| STPoint | returns such a translation parameter $k$ that $f\left(a^{j} * x-b * k\right)$ is the first <br> function having non-trivial intersection with the point $c$ |
| ScalLevel | generates a set of all translated B-splines, $B\left(a^{j} * x-b * k\right)$, having <br> non-trivial intersection with the given interval. It can be also used for <br> construction (Chui) cubic B-spline basis (for $b=1$ only). |
| SplineChuiWav | generates the Chui semi-orthogonal cubic spline wavelet, $w\left(a^{j} * x-k\right)$ <br> on the given interval. |
| SplineScal | generates dilated/translated B-spline, $B\left(a^{j} * x-b * k\right)$, of order m on <br> the given interval. |
| SplineWavelet | generates semi-orthogonal spline wavelet, $w\left(a^{j} * x-b * k\right)$, of order 1, 2 <br> or 4 on the given interval |
| WavLevel | generates a set of all translated spline wavelets, $w\left(a^{j} * x-b * k\right)$, having <br> non-trivial intersection with the given interval. It can be also used for <br> construction (Chui) cubic B-spline wavelet basis (for $b=1$ only). |

### 9.2 Function-Description

### 9.2.1 BuildDict

helps you to construct a multiresolution-like spline wavelet dictionary or a B-spline dictionary

```
To create a dictionary of your choice, edit this file and set the desired values of the
variables.
Available multiresolution-like dictionaries are:
name='1' Haar dictionary (cut-off construction)
 ='2' linear dictionary (cut-off construction)
```

```
='4' cubic dictionary (cut-off construction)
='chui_cubic' cubic spline wavelet basis (multiple knots)
```

Available B-spline dictionaries are:

```
name='1b' piece-wise constant B-spline dictionary
 ='2b' linear B-spline dictionary (cut-off construction)
 ='4b' cubic B-spline dictionary (cut-off construction)
 ='Nb' B-spline dictionary of order N (any positive integer)
 ='chui_cubicb' cubic B-spline dictionary (multiple knots)
```

Description of other parameters
a dilation factor (positive integer)
b translation factor ( $b=1$ for basis, keep 1/b being integer) use $b=1$ only for 'chui_cubic' and 'chui_cubicb'
sp array $s p=[c, d]$ stands for interval [c,d]
$j \quad$ array containing all the scales to be considered note that larger 'j' implies finer scale
L number of points partitioning the interval $s p=[s p(1) \operatorname{sp}(2)]$ it must be a positive integer value satisfying $\mathrm{L}=\mathrm{J} *(\operatorname{sp}(2)-\mathrm{sp}(1)) /\left(\mathrm{b} *\left(\mathrm{a}^{\wedge}(-j \max )\right)\right)+1$ where jmax stands for the finest scale to be considered and $J$ is a positive integer

Outputs:

| x | dicretization of the interval $s p$ containing $L$ nodes |
| :--- | :--- |
| $D$ | desired dictionary |
| ind | array of indices separating different scales in D |

EXAMPLE:
The following example constructs a cubic multiresolution-like wavelet dictionary $D$ on the interval [0,8] with scale factor $a=2, b=0.5, j=[0: 4]$ The interval [0,8] will be partitioned into L=2049 points.
name $={ }^{\prime} 4^{\prime} ; b=0.5 ; a=2$;
$\mathrm{sp}=\left[\begin{array}{ll}0 & 8\end{array}\right]$;
$j=[0: 4]$;
$\mathrm{L}=2049$;
[D, ind] =gdictfast(name, \{L;sp;j;a;b\});

## Comments:

For B-spline dictionaries see also TestSpline
For a cut-off multiresolution-like wavelet basis see ElimBound

References:
M. Andrle and L. Rebollo-Neira, "Spline wavelet dictionaries for non-linear signal approximation", preprint, 2005.
M. Andrle and L. Rebollo-Neira, "Cardinal B-spline dictionaries on a compact interval", Applied and Computational Harmonic Analysis, Vol (18,3), 336-346 (2005). C.K. Chui and E. Quak, "Wavelets on a Bounded Interval", in Numerical Methods of Approximation Theory, Vol. 9 (Eds. D. Braess and L.L. Schumaker), pp. 53-75, Birkhauser, Basel, 1992.

### 9.2.2 ElimBound

eliminates redundant boundary wavelets to have a basis for the cut-off spline wavelet dictionary constructed with $\mathrm{b}=1$

```
Usage: [DD, ind] = ElimBound(m, D, ind);
Inputs:
 m order of splines in dictionary (positive integer)
 D dictionary
 ind array of final indices for every scale in D (optional)
Outputs:
 DD basis, D without the redundant boundary wavelets
 ind updated indices for DD
For the construction of cut-off multiresolution-like wavelet dictionaries see BuildDIct.
Note: The first scale is assumed to contain scaling functions thus the redundant
wavelets are removed from all scales except the first one.
If ind is not specified it considers only one scale (wavelets) and m-1 functions are
removed from both sides.
Comments: The support of semi-orthogonal spline wavelet of order m is given by
supp=2*m-1. Thus the number of functions to eliminate at every scale at each border is
n=(supp-1)/2=m-1.
References:
 M. Andrle and L. Rebollo-Neira, "Spline wavelet dictionaries for non-linear signal
 approximation", preprint, 2005.
```


### 9.2.3 GDictFast

generates dictionaries by translating prototype functions

```
Usage: D = GDictFast(name, pars);
Inputs:
 name type of dictionary (string format)
 pars parameters (cell format)
 pars = {L,sp,j,a,b}
Description of the parameters
 L number of points partitioning the interval sp=[sp(1) sp(2)]
 sp array sp=[c d] stands for interval [c,d]
 j array containing all the scales to be considered note that larger j implies
 finer scale
 a dilation factor (positive integer)
 b translation factor (b=1 for basis, keep 1/b being integer) for 'chui_cubic'
 and 'chui_cubicb' use b=1 only
Outputs:
 D desired dictionary
 ind array of indices separating different scales in D
Comments:
The dictionaries are constructed in the following way: a prototype function for every
scale is computed for values x=linspace(sp(1),sp(2),L) (x is a dicretization of the
```

```
interval sp containing L nodes). Then this prototype function is shifted on x by an
appropriate number of nodes. For this end (L-1)*(b*a^(-jmax))/(sp(2)-sp(1)) must be
an integer where jmax stands for the finest scale parameter. In the case of 'chui_cubic'
or 'chui_cubicb' dictionaries only the inner functions are constructed by the method
above. The boundary function are calculated using given analytical expressions.
Only scales with at least one inner function are considered.
References:
 M. Andrle and L. Rebollo-Neira, "Spline wavelet dictionaries for non-linear signal
 approximation", preprint, 2005.
 M. Andrle and L. Rebollo-Neira, "Cardinal B-spline dictionaries on a compact interval",
 Applied and Computational Harmonic Analysis, Vol(18,3) 336-346 (2005).
```


### 9.2.4 NumFun

states how many functions $f\left(a^{j} * x-b * k\right)$, where $k$ is an integer, have non-trivial intersection with the interval $[c, d]$

```
Usage: n = NumFun(name, type, c, d, j, a, b);
Inputs:
 name order of splines (positive integer) or 'chui_cubic' (string)
 type string, 'scal.f.' for scaling functions, 'wavelet' for wavelets
 c,d the given interval [c,d]
 j scale level (a^j is the dilation)
 a scaling factor
 b translation factor
```

Output:
n the number of consecutive translates $f\left(a^{\wedge} j * x-b * k\right)$ having non-trivial intersection
with the interval [c,d]

### 9.2.5 SPL

generates B-splines of order $m$ at scale $j$ with translation parameter $k, B\left(a^{j} * x-k\right)$. Multiple knots for construction boundary functions are considered.

```
Usage: f = SPL(x, m, j, k, a);
Inputs:
 x a dicretization of the given interval
 j scale level (a^j is the dilation)
 m order of splines
 k translation parameter
 a scale factor
Output:
 f B-splines of order m at scale j with translation parameter k
Note:
The interval [x(1) x(end)] must be [0,K] type where K is an integer
```


### 9.2.6 STPoint

returns such a translation parameter $k$ that $f\left(a^{j} * x-b * k\right)$ is the first function having non-trivial intersection with the point $c$

```
Usage: k = STPoint(name, type, c, j, a, b);
```

```
Inputs:
 name order of splines (positive integer) or 'chui_cubic' (string)
 type string, 'scal.f.' for scaling functions, 'wavelet' for wavelets
 c left point of the given interval
 j scale level (a`j is the dilation)
 a scaling factor
 b translation factor
Output:
 k desired translation parameter such that f(a^j*x-b*k) is the first function
 having non-trivial intersection with the point c
```


### 9.2.7 ScalLevel

generates a set of all translated B-splines, $B\left(a^{j} * x-b * k\right)$, having non-trivial intersection with the given interval. It can be also used for construction (Chui) cubic B-spline basis (for $b=1$ only).

```
Usage: D = ScalLevel(name, x, j, a, b)
Inputs:
 name specifies the type of splines
 x a dicretization of the given interval
 j scale level (a^j is the dilation)
 a scaling factor
 b translation factor
Available B-splines are:
name=1 piece-wise constant B-spline dictionary
 =2 linear B-spline dictionary (cut-off construction)
 =4 cubic B-spline dictionary (cut-off construction)
 =N B-spline dictionary of order N (any positive integer)
 ='chui_cubic' cubic B-spline dictionary (multiple knots)
```

Output:
D set of B-splines at scale $j$ having non-trivial intersection with the given
interval

### 9.2.8 SplineChuiWav

generates the Chui semi-orthogonal cubic spline wavelet, $w\left(a^{j} * x-k\right)$ on the given interval.

```
Usage: w = SplineChuiWav(x, j, k, a);
Inputs:
 x a dicretization of the given interval
 j scale level (a^j is the dilation)
 k translation parameter
 a scale factor
Output:
 w normalized cubic Chui semi-orthogonal spline wavelet
```

References:
C.K. Chui and E. Quak, "Wavelets on a Bounded Interval", in Numerical Methods of
Approximation Theory, Vol. 9 (Eds. D. Braess and L.L. Schumaker), pp. 53-75,
Birkhauser, Basel, 1992.

### 9.2.9 SplineScal

generates dilated/translated B-spline, $B\left(a^{j} * x-b * k\right)$, of order m on the given interval.

```
Usage: w = SplineScal(x, j, k, m, a, b
Inputs:
 x a dicretization of the given interval
 j,k dilation and translation parameters
 a}\mathrm{ scaling factor
 b translation factor
 m order of spline (positive integer)
Output:
 w dilated/translated B-spline of a given order
```


### 9.2.10 SplineWavelet

generates semi-orthogonal spline wavelet, $w\left(a^{j} * x-b * k\right)$, of order 1,2 or 4 on the given interval

```
Usage: w = SplineWavelet(x, j, k, m, a, b);
Inputs:
 x a dicretization of the given interval
 j,k dilation and translation parameters
 a scaling factor
 b translation factor
 m order of spline wavelet (1,2 or 4)
Output:
 w normalized dilated/translated spline wavelet of a given order
```


### 9.2.11 WavLevel

generates a set of all translated spline wavelets, $w\left(a^{j} * x-b * k\right)$, having non-trivial intersection with the given interval. It can be also used for construction (Chui) cubic B-spline wavelet basis (for $b=1$ only).

```
Usage: D = WavLevel(name, x, j, a, b);
Inputs:
 name specifies the type of spline wavelets
 x a dicretization of the given interval
 j scale level (a`j is the dilation)
 a scaling factor
 b translation factor
Available types of spline wavelets:
name=1 Haar dictionary (cut-off construction)
 =2 linear dictionary (cut-off construction)
 =4 cubic dictionary (cut-off construction)
 ='chui_cubic' cubic spline wavelet basis (multiple knots)
Output:
 D set of all normalized spline wavelets at scale level j having non-trivial
 intersection with the given interval
```


[^0]:    Constructs an approximation of $f$ using OOMP and improves the approximation with KSwapping interchanging swi-pairs of atoms (swi from the approximation and swi from the dictionary) then (swi+1)-atoms and (swi+1)-atoms and so on up to sws-atoms, if tols is not reached. If the stopping criterion based on the precision tols is not reached re=0

