
Highly nonlinear approximations for signal representation

Manual for MATLAB routines

James BOWLEY, Laura REBOLLO-NEIRA and Zhiqiang XU
Aston University, Birmingham, B4 7ET, UK

http://www.nonlinear-approx.info

This project is supported by EPSRC (EP/D062632/1).

Contents

I Pursuits 3

1 Pursuits 4
1.1 Function-Summary . 4
1.2 Function-Description . 4

1.2.1 BOOMP . 4
1.2.2 BOOMPQ . 5
1.2.3 KSwapping . 5
1.2.4 OBOMP . 6
1.2.5 OBOMPKSwaps . 7
1.2.6 OMP . 8
1.2.7 OMPFinalRefi . 9
1.2.8 OMPKSwapRefi . 9
1.2.9 OMPKSwapping . 10
1.2.10 OMPKSwaps . 11
1.2.11 OMPSwapping . 12
1.2.12 OOMP . 12
1.2.13 OOMPFinalRefi . 13
1.2.14 OOMPKSwapRefi . 14
1.2.15 OOMPKSwaps . 14
1.2.16 Swapping . 15
1.2.17 VFSwapping . 16

2 Lq Minimization 17
2.1 Function-Summary . 17
2.2 Function-Description . 17

2.2.1 ALqMin . 17
2.2.2 LqFOCUSS . 18
2.2.3 RegFOCUSS . 18

3 Examples 19
3.1 Example-Summary . 19
3.2 Example-Description . 19

3.2.1 exa OBOMP . 19
3.2.2 exa OOMPKSwaps . 19
3.2.3 exa chirp . 19

II Projectors and Duals 20

4 Projectors 21
4.1 Function-Summary . 21
4.2 Function-Description . 21

4.2.1 ObliProj . 21
4.2.2 OptObliProj . 22
4.2.3 OrthProj . 22

1

4.2.4 RegObliProj . 23

5 Duals 24
5.1 Function-Summary . 24
5.2 Function-Description . 24

5.2.1 BioBack . 24
5.2.2 BioDictDel . 25
5.2.3 BioDictIns . 25
5.2.4 BioFor . 26
5.2.5 BioInsert . 26
5.2.6 DRE . 27
5.2.7 DREOr . 27
5.2.8 DREOrp . 28
5.2.9 FrDelete . 28
5.2.10 FrInsert . 29
5.2.11 FrInsertBlock . 29
5.2.12 NBioDictIns . 30
5.2.13 NBioInsert . 30

6 Examples 31
6.1 Example-Summary . 31
6.2 Example-Description . 31

6.2.1 exa ObliProj . 31
6.2.2 exa OptObliProj . 31
6.2.3 exa RegObliProj . 31

III Image Processing Tools 32
6.3 Function-Summary . 33
6.4 Function-Description . 33

6.4.1 CalcPSNR . 33
6.4.2 DCos . 33
6.4.3 DetectLines . 33
6.4.4 GenerateHats . 34
6.4.5 GenerateTrapezium . 34
6.4.6 ImageApproximation . 34
6.4.7 RemoveDependantAtoms . 35
6.4.8 TranslatePrototype . 35

6.5 Examples . 36
6.6 Example-Summary . 36
6.7 Example-Description . 36

6.7.1 exa image approximation . 36
6.7.2 exa impulse removal . 36

IV Spline Dictionaries 38

7 Uniform 39
7.1 Function-Summary . 39
7.2 Function-Description . 39

7.2.1 BSpline . 39
7.2.2 DictSpline . 40
7.2.3 Differ . 40
7.2.4 ErrorTest . 40
7.2.5 Green . 40
7.2.6 NormDict . 41
7.2.7 SplineLevel . 41

2

7.2.8 SymSpline . 41
7.2.9 TSpline . 42

8 Non Uniform 43
8.1 Function-Summary . 43
8.2 Function-Description . 43

8.2.1 CutDic . 43
8.2.2 NonBSpline . 43
8.2.3 NonUniB . 44
8.2.4 ProducePartition . 44

9 Wavelets 45
9.1 Function-Summary . 45
9.2 Function-Description . 45

9.2.1 BuildDict . 45
9.2.2 ElimBound . 47
9.2.3 GDictFast . 47
9.2.4 NumFun . 48
9.2.5 SPL . 48
9.2.6 STPoint . 48
9.2.7 ScalLevel . 49
9.2.8 SplineChuiWav . 49
9.2.9 SplineScal . 50
9.2.10 SplineWavelet . 50
9.2.11 WavLevel . 50

3

Preface

This document was written as an users guide to the computational tools delivered by the EPSRC funded
project ”Highly nonlinear approximations for sparse signal representation”. More information about the project
and tutorial material related to the routines of this manual are given in the website http://www.nonlinear-
approx.info.

The project followed on of the previous EPSRC funded project “Biorthogonal techniques for optimal signal
represeation. Thanks are due to Miroslav Andrle for leaving the material of that project well organized, which
facilitated the continuation of the work.

We would like to thank to Andreas Hartmann for his M2TEX script which has been used for generating most
of this manual from our MATLAB sources.

4

Part I

Pursuits

5

Chapter 1

Pursuits

1.1 Function-Summary

BOOMP Backward-Optimized Orthogonal Matching Pursuit
BOOMPQ Backward-Optimized Orthogonal Matching and gives the orthonormal

basis
KSwapping extends Swapping to considering K swaps
OBOMP Oblique Optimized Matching Pursuit
OBOMPKSwaps Oblique Optimized Matching Pursuit with k swaps
OMP Orthogonal Matching Pursuit
OMPFinalRefi Refinment of OMP
OMPKSwapRefi Refiment of OOMP by kswapping and backward deleting steps
OMPKSwapping extends OMPSwapping to considering K swaps
OMPKSwaps Optimized Orthogonal Matching Pursuit with k swaps
OMPSwapping Swapping based refinement of OMP method
OOMP Optimized Orthogonal Matching Pursuit
OOMPFinalRefi refinament of OOMP by swapping and backward deleting steps.
OOMPKSwapRefi Refiment of OOMP by kswapping and backward deleting steps
OOMPKSwaps Optimized Orthogonal Matching Pursuit with k swaps
Swapping Swapping based refinement of OMP methods
VFSwapping Swapping based refinement of OMP methods (inner product implemen-

tation)

1.2 Function-Description

1.2.1 BOOMP

Backward-Optimized Orthogonal Matching Pursuit

Using the Least Square criterion at each step it eliminates one function from a given
basis to have best possible representation in the reduced space. It also modifies the
corresponding biorthogonal functions.

Usage: [D, Di, beta, c] = BOOMP(f, D, beta, tol, No);

Inputs:
f signal to represent
D set of chosen independent functions
beta set of biorthogonal functions to D
tol tolerance, desired difference between signal and its approx, (optional,

default tol=1.0e-2)

6

No (optional) desired number of atoms in the decomposition if you want really No
atoms set tol=0, it speeds the process

Outputs:
D new reduced set of independent functions
Di indices of atoms in new D w.r.t. to original D
beta biorthogonal functions to new D
c coefficients of the atomic decomposition

Note: this routine should be use only at the end of our selection process since it is
not adapting (for the speed purposes) unselected dictionary functions. Thus any of our
forward selection methods cannot be used after this.

References:
M. Andrle, L. Rebollo-Neira, and E. Sagianos, "Backward-Optimized Orthogonal Matching
Pursuit Approach", IEEE Signal Processing Letters, Vol (11,9), 705-708 (2004).

1.2.2 BOOMPQ

Backward-Optimized Orthogonal Matching and gives the orthonormal basis

Using the Least Square criterion at each step it eliminates one function from a given
basis to have best possible representation in the reduced space. It also modifies the
corresponding biorthogonal functions and orthonormal basis (obtained by modified
Gram-Schmidt).

Usage: [D, Di, Q, beta, c] = BOOMPQ(f, D, Di, Q, beta, toli, No);
[D, Di, Q, beta, c] = BOOMPQ(f, D, Di, Q, beta, tol);

Inputs:
f analyzing signal D dictionary D(:,1:N) is the selected basis, N=size(beta,2)
Di indices of atoms Q Q(:,1:N) orthonormal set spanning D(:,1:N), Q(:,N+1:end)

the rest of the dictionary orthogonalized w.r.t Q(:,1:N)
beta set of biorthogonal functions to D(:,1:N) tol tolerance, difference between

signal and approx, (optional, default tol=1.0e-2)
No (optional) desired number of atoms in the decomposition if you want really No

atoms set tol=0, it speeds the process

Outputs:
D rearranged dictionary

D(:,1:s) reduced basis, s=size(beta,2)
Di indices of atoms in new D w.r.t. to original D Q Q(:,1:s) orthonormal set

spanning D(:,1:N), Q(:,s+1:end) the rest of the dictionary orthogonalized w.r.t
Q(:,1:s)

beta biorthogonal functions to new D(:,1:s) c coefficients of the atomic
decomposition

References:
M. Andrle, L. Rebollo-Neira, and E. Sagianos, "Backward-Optimized Orthogonal Matching
Pursuit Approach", IEEE Signal Processing Letters, Vol (11,9), 705-708 (2004).

1.2.3 KSwapping

extends Swapping to considering K swaps

Given an initial approximation of f, it improves upon the approximation by interchanging
swi-pairs of atoms (swi from the approximation and swi from the dictionary) then
(swi+1)-atoms and (swi+1)-atoms, (swi+2)-atoms and (swi+2)-atoms and so on up to

7

sws-atoms, unless the desired precision tol has been reached. (See Ref[1]). If the
number of atoms involved in the swapping process is equal to sws and the stopping
criterion based on the precision tol has not been reached the function returns the value
re=0. Note: The inputs are obtainable by running OOMP first (see the example)

Usage: [re, resid, D, Di, beta, C, Q] = KSwapping(f, D, Di, Q, beta, C, swi,...
sws, tol);

[re, resid, D, Di, beta, C, Q] = KSwapping(f, D, Di, Q, beta, C);

Inputs:
f signal to be decomposed
D dictionary, first k functions D(:,1:k) are the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal functions to D(:,1:k), k=size(beta,2)
C coefficients in the expansion
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k), Q(:,k+1:end)

unselected atoms subtracted by their component in D(:,1:k)
swi minimum number of atoms to be swapped, default swi=1
sws maximum number of atoms to be swapped
tol tolerance for the approximation, default tol= 1e-8

Outputs:
re convergence indicator: re=1 if the method converges within the given tol and

re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first

component of resid is the residual when swi atoms are swapped, the second
component is the residual when (swi+1) atoms are swapped and so on. If the
swapping is started from swi atoms, resid is of length sws-swi+1

D updated (re-arranged) dictionary, D(:,1:k) is the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal vectors to D(:,1:k)
C coefficients in the expansion
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k), Q(:,k+1:end)

unselected atoms subtracted by their component in D(:,1:k)

References:
[1] M. Andrle and L. Rebollo-Neira, "Improvement of Orthogonal Matching Pursuit
strategies by Backward and Forward movements," in Proc. of the 31st International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’06)
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching
pursuit strategies", Signal Processing, Vol (86,3), 480-495 (2006)
[3] L. Rebollo-Neira, "Measurements design and phenomena discrimination", J. Phys. A:
Math. Theor. 42 (2009)

See also OOMPKSwaps OMPKSwaps OBOMPKSwaps Swapping OOMP

1.2.4 OBOMP

Oblique Optimized Matching Pursuit

Constructs an atomic decomposition which gives the oblique projection of a signal onto a
subspace of the span of V along span of WC.

It first generates orthogonal projections onto the orthogonal complement ofthe span of
WC and then find the atomic decomposition of the projected signal by the OOMP method.

For an example of how to use OBOMP to separate signal components run the code Exa_OBOMP

8

Usage: [fv] = OBOMP(f, V, WC);
[fv, Vnew, Di, beta, c, U, Q] = OBOMP(f, V, WC, err, No, opt, ind);

Inputs:
f signal to be projected
V dictionary for the space to project onto
WC dictionary spanning the space to project along
err error of each point of f (vector) or tolerance for the error’s norm (scalar)
No (optional) maximal number of atoms to choose, if the number of chosen atoms

equals to No, the routine will stop (default No=size(V,2))
ind (optional) indices determining the initial subspace
opt (optional) chose the method for computing the orthogonal projector with

OrthProj (default opt=2 with tolerance for linear independence 1e-7)

Outputs:
Vnew the dictionary V rearranged according to the selection process Vnew(:,1:k)

contains the atoms chosen into the atomic decomposition
Di indices of atoms in Vnew written w.r.t the original V
U Dictionary for the orthogonal complement of WC (U(:,1:k)) is a basis

bi-orthogonal to beta)
Q the first k columns Q(:,1:k) gives an orthonormal basis for the span of

U(:,1:k)
beta ’k’ biorthogonal vectors to new V(:,1:k) and U(:,1:k) (in span of U(:,1:k))
c ’k’ coefficients of the atomic decomposition for the oblique projection
fv oblique projection of f onto new V(:,1:k) along WC, i.e fv=Vnew(:,1:K)*c’

References
[1] L. Rebollo-Neira, "Oblique Matching Pursuit", IEEE Signal Processing Letters,
14,10, 703-707 (2007).
[2] L. Rebollo-Neira, "Measurements design and phenomena discrimination", J. Phys. A:
Math. Theor. 42 (2009).

See also OBOMPKSwaps OOMP OOMPKSwaps

1.2.5 OBOMPKSwaps

Oblique Optimized Matching Pursuit with k swaps

Constructs an atomic decomposition which gives the oblique projection of a signal onto a
subspace of the span of V, along span of WC, using OOMPKSwaps.

It first takes the orthogonal projection onto the orthogonal complement of the span of
WC, then finds the atomic decomposition of the projected signal by the OOMP method and
corrects with KSwapping to obtain the sought projection.

for an example on how to use OBOMPKSwaps to separate signal components run the code
exa_OBOMPKSwaps

Usage: [re, resid, fv, Vnew, Di, beta, C, U, Q] = OBOMPKSwaps(f, V, WC, err,...
opt, No, ind, swi, sws, tols);

[re, resid, fv, Vnew, Di] = OBOMPKSwaps(f, V, W);

Inputs:
f signal to be projected
V dictionary for the space to project onto
WC dictionary spanning the space to project along

9

err (optional) error of each point of f, or tolerance for the error’s norm, before
starting the corrections (default err=0.0001*norm(f))

opt (optional) chose the method for computing the orthogonal projector with
OrthProj (default opt=2 with tolerance for linear Independence 1e-7)

No (optional) maximal number of atoms to choose,(default No=size(D,2))
ind (optional) indices determining the initial subspace
swi (optional) minimum number of atoms to be swapped, (default swi=1)
sws (optional) maximum number of atoms to be swapped, (default sws=size(beta,2))
tols (optional) tolerance for the final approximation (default 0.0000001*norm(f))

Outputs:
re convergence indicator: re=1 if the method converges within the given tols and

re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first

component of resid is the residual when swi atoms are swapped, the second
component when (swi+1) atoms are swapped and so on.

fv oblique projection of f onto new V(:,1:k) along WC, i.e. fv=Vnew(:,1:K)*C’
Vnew the dictionary V rearranged according to the selection process Vnew(:,1:k)

contains the atoms chosen to construct the atomic decomposition
Di indices of atoms in Vnew written w.r.t the original V
beta ’k’ biorthogonal vectors to new V(:,1:k) and U(:,1:k)(spanning the same space

as U(:,1:k)
C ’k’ coefficients of the atomic decomposition for the oblique projection
U Dictionary for the orthogonal complement of WC (U(:,1:k)) is a basis

bi-orthogonal to beta)
Q the first k columns Q(:,1:k) gives an orthonormal basis for span of U(:,1:k)

and beta.

References:
[1] L. Rebollo-Neira, "Oblique Matching Pursuit", IEEE Signal Processing Letters,
14,10, 703-707 (2007)
[2] L. Rebollo-Neira, "Measurements design and phenomena discrimination", J. Phys. A:
Math. Theor. 42 (2009)

1.2.6 OMP

Orthogonal Matching Pursuit

It creates an atomic decomposition of a signal using OMP criterion. You can choose a
tolerance, the number of atoms to take in or an initial subspace to influence the OMP
algorithm.

Usage: [Dnew, Di, beta, c] = Omp(f, D, tol, No, ind);
[Dnew, Di] = Omp(f, D, tol);

Inputs:
f analyzing signal
D dictionary of normalized atoms
tol desired distance between f and its approximation the routine will stop if

norm(f’-Dsub*(f*beta)’)*sqrt(delta)<tol where delta=1/L, L is number of points
in a sample

No (optional) maximal number of atoms to choose, if the number of chosen atoms
equals to No, routine will stop (default No=size(D,2)

ind (optional) indices determining the initial subspace,

Outputs:

10

D the dictionary D rearranged according to the selection process D(:,1:k)
contains the atoms chosen into the atomic decomposition

Di indices of atoms in new D written w.r.t the original D
beta ’k’ biorthogonal functions corresponding to new D(:,1:k)
c ’k’ coefficients of the atomic decomposition

References:
L. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach", IEEE
Signal Processing Letters, Vol(9,4), 137-140, (2002).

See also OMPF.

1.2.7 OMPFinalRefi

Refinment of OMP

It creates an atomic decomposition for approximation a signal using OMP method up to a
given tolerance. When possible, the sparsity is improved afterwards by a combination of
swapping and backward deleting steps.

You can choose a tolerance, the maximum number of atoms in the decomposition and an
initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their
component in the chosen space are also available.

Usage: [D0, Di0] = OMPFinalRefi(f, D, tol);
[DS0, Di0, beta0, c0, Q0] = OMPFinalRefi(f, D, tol, No, ind);

Inputs:
f analyzing signal
D dictionary of normalized atoms
tol desired distance between f and its approximation the routine will stop if

norm(f’-Dsub*(f*beta)’)*sqrt(delta)<tol where delta=1/L (L is number of points
in a sample) or delta=1, which is the default in OOMPF (to change this
uncomment the corresponding line in OOMPF)

No (optional) maximal number of atoms to choose, if the number of chosen atoms
equals to No, OOMP routine will stop (default No=size(D,2))

ind (optional) indices determining the initial subspace for OOMP

Outputs:
DS0 the dictionary D rearranged according to the selection process DS0(:,1:k)

contains the atoms chosen into the atomic decomposition
Di0 indices of atoms in DS0 written w.r.t the original D
Q0 Q(:,1:k) contains orthonormal functions spanning DS0(:,1:k) Q(:,k+1:N)

contains DS0(:,k+1:N) subtracted by the projection onto the space generated
by Q0(:,1:k) (resp. DS0(:,1:k))

beta0 ’k’ biorthogonal functions corresponding to new DS0(:,1:k)
c0 ’k’ coefficients of the atomic decomposition

1.2.8 OMPKSwapRefi

Refiment of OOMP by kswapping and backward deleting steps

It creates an atomic decomposition for approximation a signal using OOMP method up to a
given tolerance. When possible, the sparsity is improved afterwards by a combination of
kswapping and backward deleting steps.

You can choose a tolerance, the maximum number of atoms in the decomposition and an
initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their

11

component in the chosen space are also available.

Usage: [D0, Di0] = OMPKSwapRefi(f, D, tol);
[DS0, Di0, Q0, beta0, c0] = OMPKSwapRefi(f, D, tol, No, ind);

Inputs:
f analyzing signal
D dictionary of normalized atoms
tol desired distance between f and its approximation the routine will stop if

norm(f’-Dsub*(f*beta)’)*sqrt(delta)<tol where delta=1/L (L is number of points
in a sample) or delta=1, which is the default in OOMPF (to change this
uncomment the corresponding line in OOMPF)

No (optional) maximal number of atoms to choose, if the number of chosen atoms
equals to No, OOMP routine will stop (default No=size(D,2)

ind (optional) indices determining the initial subspace for OOMP
swi (optional) minimum number of atoms to swap (defaul=1)
sws (optional) maximum number of atoms to swap (defaul=all)
[] can be used for sws, swi, ind, No, and tol

Outputs:
DS0 the dictionary D rearranged according to the selection process DS0(:,1:k)

contains the atoms chosen into the atomic decomposition
Di0 indices of atoms in DS0 written w.r.t the original D
beta0 ’k’ biorthogonal functions corresponding to new DS0(:,1:k)
c0 ’k’ coefficients of the atomic decomposition
Q0 Q(:,1:k) contains orthonormal functions spanning DS0(:,1:k), Q(:,k+1:N)

contains DS0(:,k+1:N) subtracted by the projection onto the space generated by
Q0(:,1:k) (resp. DS0(:,1:k))

1.2.9 OMPKSwapping

extends OMPSwapping to considering K swaps

Given an initial approximation of f, it improves upon the approximation by interchanging
swi-pairs of atoms (swi from the approximation and swi from the dictionary) then
(swi+1)-atoms and (swi+1)-atoms, (swi+2)-atoms and (swi+2)-atoms and so on up to
sws-atoms, unless the desired precision tol has been reached. (See Ref[1]). If the
number of atoms involved in the swapping process is equal to sws and the stopping
criterion based on the precision tol has not been reached the function returns the value
re=0. Note: The inputs are obtainable by running OMP first (see the example)

For an example on how to use the routine see exa_OOMPKSwaps

Usage: [re, resid, D, Di, beta, C, Q] = OMPKSwapping(f, D, Di, Q, beta, C, swi,...
sws, tol);

[re, resid, D, Di, beta, C, Q] = OMPKSwapping(f, D, Di, Q, beta, C);

Inputs:
f analysing signal
D dictionary, first k functions D(:,1:k) are the selected basis
Di indices of atoms in D with respect to the original dictionary
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k)

Q(:,k+1:end) unselected atoms subtracted by their component in D(:,1:k)
beta biorthogonal functions to D(:,1:k), k=size(beta,2)
C coefficients in the expansion
swi minimum number of atoms to be swapped, default swi=1
sws maximum number of atoms to be swapped

12

tol tolerance for the approximation, default tol= 1e-8

Outputs:
re convergence indicator: re=1 if the method converges within the given tol and

re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first

component of resid is the residual when swi atoms are swapped, the second
component is the residual when (swi+1) atoms are swapped and so on. If the
swapping is started from swi atoms, resid is of length sws-swi+1

D updated (re-arranged) dictionary, D(:,1:k) is the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal vectors to D(:,1:k)
C coefficients in the expansion
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k)

Q(:,k+1:end) unselected atoms subtracted by their component in D(:,1:k)

References:
[1] M. Andrle and L. Rebollo-Neira, "Improvement of Orthogonal Matching Pursuit
strategies by Backward and Forward movements," in Proc. of the 31st International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’06)
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching
pursuit strategies", Signal Processing, Vol (86,3), 480-495 (2006)
[3] L. Rebollo-Neira, "Measurements design and phenomena discrimination",% J. Phys.
A: Math. Theor. 42 (2009)

See also OOMPKSwaps OMPKSwaps OBOMPKSwaps Swapping OOMP BOOMP OBOMP

1.2.10 OMPKSwaps

Optimized Orthogonal Matching Pursuit with k swaps

Constructs an approximation of f using OOMP and improves the approximation with
KSwapping interchanging swi-pairs of atoms (swi from the approximation and swi from the
dictionary) then (swi+1)-atoms and (swi+1)-atoms and so on up to sws-atoms, if tols is
not reached. If the stopping criterion based on the precision tols is not reached re=0
is returned. (See KSwapping)

Usage: [re, resid, D, Di, beta, C, Q] = OOMPKSwaps(f, D);
[re, resid, D, Di, beta, C, Q] = OOMPKSwaps(f, D, err, No, ind, swi,...

sws, tols);

Inputs:
f signal to be represenated
D dictionary for the space to project onto
err (optional) error of each point of f, or tolerance for the error’s norm, before

starting the swappings (default err=0.0001*norm(f))
No (optional) maximal number of atoms to choose,(default No=size(D,2))
ind (optional) indices determining the initial subspace
swi (optional) minimum number of atoms to be swapped, (default swi=1)
sws (optional) maximum number of atoms to be swapped, (default sws=size(beta,2))
tols (optional) tolerance for the final approximation (default 0.0000001*norm(f))

Outputs:
re convergence indicator: re=1 if the method converges within the given tols and

re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first

component of resid is the residual when swi atoms are swapped, the second

13

component when (swi+1) atoms are swapped and so on.
D updated (re-arranged) dictionary, D(:,1:k) is the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal vectors to D(:,1:k)
C coefficients in the expansion
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k)

Q(:,k+1:end) unselected atoms subtracted by their component in D(:,1:k)

References:
[1] M. Andrle and L. Rebollo-Neira, "Improvement of Orthogonal Matching Pursuit
strategies by Backward and Forward movements," in Proc. of the 31st International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’06)
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching
pursuit strategies", Signal Processing, Vol (86,3), 480-495 (2006)
[3] L. Rebollo-Neira, "Measurements design and phenomena discrimination", J. Phys. A:
Math. Theor. 42 (2009)
[4] L. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach", IEEE
Signal Processing Letters, Vol(9,4), 137-140, (2002).

1.2.11 OMPSwapping

Swapping based refinement of OMP method

It interchanges at each step one atom from the atomic decomposition with another atom
from the dictionary to improve the OMP approximation via adaptive biorthogonalization.
At each step it modifies the biorthogonal vectors giving rise to the duals of selected
atoms. The inputs are obtainable from the outputs of the OMP function

Usage: [D, Di, Q, beta] = OMPSwapping(f, D, Di, Q, beta);

Inputs:
D dictionary, first k functions D(:,1:k) are the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal vectors to D(:,1:k), k=size(beta,2)
Q orthonormal basis spanning the same space as D(:,1:k)

Outputs:
D updated (re-arranged) dictionary, D(:,1:k) are the selected basis
beta biorthogonal functions to D(:,1:k), k=size(beta,2)
Di indices of atoms in D with respect to the original dictionary
Q Q orthonormal basis spanning the same space as D(:,1:k)

References:
M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching
pursuit strategies", Signal Processing, Vol 86, No 3, pp. 480-495, 2006.

See also OOMPSwapping, OOMPKSwaps, OMPKSwaps, OMPKSwapping

1.2.12 OOMP

Optimized Orthogonal Matching Pursuit

It creates an atomic decomposition of a signal using OOMP method [1]. You can choose a
tolerance, the number of atoms to take in or an initial subspace to influence the OOMP
algorithm. Non-selected atoms subtracted by their component in the chosen space are also
available.

Usage: [Dnew, beta, Di] = OOMP(f, D, tol);

14

[Dnew, beta, Di, c, Q] = OOMP(f, D, tol, No, ind);

Inputs:
f signal to be represented
D dictionary of atoms
tol desired distance between f and its approximation the routine will stop if

norm(f’-Dsub*(f*beta)’)*sqrt(delta)<tol where delta=1/L, L is number of points
in a sample

No (optional) maximal number of atoms to choose, if the number of chosen atoms
equals to No, routine will stop (default No=size(D,2))

ind (optional) indices determining the initial subspace,

Outputs:
D the dictionary D rearranged according to the selection process D(:,1:k)

contains the atoms chosen into the atomic decomposition
beta ’k’ biorthogonal functions corresponding to new D(:,1:k)
Di indices of atoms in new D written w.r.t the original D
c ’k’ coefficients of the atomic decomposition
Q Q(:,1:k) contains orthonormal functions spanning new D(:,1:k), Q(:,k+1:N)

contains new D(:,k+1:N) subtracted by the projection onto the space generated
by Q(:,1:k) (resp. D(:,1:k))

References:
[1] L. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach",
IEEE Signal Processing Letters, Vol(9,4), 137-140, (2002).
For the current implementation:
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal
matching pursuit strategies", Signal Processing, Vol 86, No 3, pp. 480-495, (2006).

See also OMP Swapping OOMPKSwaps OMPKSwaps OOMPFinalRefi BOOMP OBOMP

1.2.13 OOMPFinalRefi

refinament of OOMP by swapping and backward deleting steps.

It creates an atomic decomposition for approximation a signal using OOMP method up to a
given tolerance. When possible, the sparsity is improved afterwards by a combination of
swapping and backward deleting steps.

You can choose a tolerance, the maximum number of atoms in the decomposition and an
initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their
component in the chosen space are also available.

Usage: [D0, Di0] = OOMPFinalRefi(f, D, tol);
[DS0, Di0, beta0, c0,Q0] = OOMPFinalRefi(f, D, tol, No, ind);

Inputs:
f analyzing signal
D dictionary of normalized atoms
tol desired distance between f and its approximation the routine will stop if

norm(f’-Dsub*(f*beta)’)*sqrt(delta)<tol where delta=1/L (L is number of points
in a sample) or delta=1, which is the default in OOMP (to change this
uncomment the corresponding line in OOMP)

No (optional) maximal number of atoms to choose, if the number of chosen atoms
equals to No, OOMP routine will stop (default No=size(D,2)

ind (optional) indices determining the initial subspace for OOMP
[] can be used for ind, No tol

15

Outputs:
DS0 the dictionary D rearranged according to the selection process DS0(:,1:k)

contains the atoms chosen into the atomic decomposition
Di0 indices of atoms in DS0 written w.r.t the original D
Q0 Q(:,1:k) contains orthonormal functions spanning DS0(:,1:k), Q(:,k+1:N)

contains DS0(:,k+1:N) subtracted by the projection onto the space generated
by Q0(:,1:k) (resp. DS0(:,1:k))

beta0 ’k’ biorthogonal functions corresponding to new DS0(:,1:k)
c0 ’k’ coefficients of the atomic decomposition

1.2.14 OOMPKSwapRefi

Refiment of OOMP by kswapping and backward deleting steps

It creates an atomic decomposition for approximation a signal using OOMP method up to a
given tolerance. When possible, the sparsity is improved afterwards by a combination of
kswapping and backward deleting steps.

You can choose a tolerance, the maximum number of atoms in the decomposition and an
initial subspace to influence the OOMP algorithm. Non-selected atoms subtracted by their
component in the chosen space are also available.

Usage: [D0, Di0] = OOMPKSwapRefi(f, D, tol);
[DS0, Di0, Q0, beta0, c0] = OOMPKSwapRefi(f, D, tol, No, ind);

Inputs:
f analyzing signal
D dictionary of normalized atoms
tol desired distance between f and its approximation the routine will stop if

norm(f’-Dsub*(f*beta)’)*sqrt(delta)<tol where delta=1/L (L is number of points
in a sample) or delta=1, which is the default in OOMPF (to change this
uncomment the corresponding line in OOMPF)

No (optional) maximal number of atoms to choose, if the number of chosen atoms
equals to No, OOMP routine will stop (default No=size(D,2)

ind (optional) indices determining the initial subspace for OOMP
swi (optional) minimum number of atoms to swap (defaul=1)
sws (optional) maximum number of atoms to swap (defaul=all)
[] can be used for sws, swi, ind, No, and tol

Outputs:
DS0 the dictionary D rearranged according to the selection process DS0(:,1:k)

contains the atoms chosen into the atomic decomposition
Di0 indices of atoms in DS0 written w.r.t the original D
beta0 ’k’ biorthogonal functions corresponding to new DS0(:,1:k)
c0 ’k’ coefficients of the atomic decomposition
Q0 Q(:,1:k) contains orthonormal functions spanning DS0(:,1:k), Q(:,k+1:N)

contains DS0(:,k+1:N) subtracted by the projection onto the space generated by
Q0(:,1:k) (resp. DS0(:,1:k))

1.2.15 OOMPKSwaps

Optimized Orthogonal Matching Pursuit with k swaps

Constructs an approximation of f using OOMP and improves the approximation with
KSwapping interchanging swi-pairs of atoms (swi from the approximation and swi from the
dictionary) then (swi+1)-atoms and (swi+1)-atoms and so on up to sws-atoms, if tols is
not reached. If the stopping criterion based on the precision tols is not reached re=0

16

is returned. (See KSwapping)

For an example on how to use OOMPKSwaps to represent a signal run de code exa_OOMPKSwaps

Usage: [re, resid, D, Di, beta, C, Q] = OOMPKSwaps(f, D);
[re, resid, D, Di, beta, C, Q] = OOMPKSwaps(f, D, err, No, ind, swi,...

sws, tols);

Inputs:
f signal to be represenated
D dictionary for the space to project onto
err (optional) error of each point of f, or tolerance for the error’s norm, before

starting the swappings (default err=0.0001*norm(f))
No (optional) maximal number of atoms to choose,(default No=size(D,2))
ind (optional) indices determining the initial subspace
swi (optional) minimum number of atoms to be swapped, (default swi=1)
sws (optional) maximum number of atoms to be swapped, (default sws=size(beta,2))
tols (optional) tolerance for the final approximation (default 0.0000001*norm(f))

Outputs:
re convergence indicator: re=1 if the method converges within the given tols and

re=0 otherwise
resid vector of length sws to store the residuals at each swapping. The first

component of resid is the residual when swi atoms are swapped, the second
component when (swi+1) atoms are swapped and so on.

D updated (re-arranged) dictionary, D(:,1:k) is the selected basis
Di indices of atoms in D with respect to the original dictionary
beta biorthogonal vectors to D(:,1:k)
C coefficients in the expansion
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k), Q(:,k+1:end)

unselected atoms subtracted by their component in D(:,1:k)

References:
[1] M. Andrle and L. Rebollo-Neira, "Improvement of Orthogonal Matching Pursuit
strategies by Backward and Forward movements," in Proc. of the 31st International
Conference on Acoustics, Speech, and Signal Processing (ICASSP’06)
[2] M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching
pursuit strategies", Signal Processing, Vol (86,3), 480-495 (2006)
[3] L. Rebollo-Neira, "Measurements design and phenomena discrimination",% J. Phys.
A: Math. Theor. 42 (2009)

1.2.16 Swapping

Swapping based refinement of OMP methods

It interchange at each step one atom from the atomic decomposition for another atom from
the dictionary to improve the signal approximation. Similarly at each step it modifies
the biorthogonal vectors and the unselected atoms from the dictionary subtracted by
their component from the selected space. The process is carried out until the
approximation error will not increase.

Usage: [D, Di, Q, beta] = Swapping(f, D, Di, Q, beta);

Inputs:
D dictionary, first k functions D(:,1:k) are the selected basis
Di indices of atoms in D with respect to the original dictionary

17

beta biorthogonal functions to D(:,1:k), k=size(beta,2)
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k)

Q(:,k+1:end) unselected atoms subtracted by their component in D(:,1:k)

Outputs:
D updated (re-arranged) dictionary, D(:,1:k) are the selected basis
beta biorthogonal functions to D(:,1:k), k=size(beta,2)
Di indices of atoms in D with respect to the original dictionary
Q Q(:,1:k) orthonormal basis spanning the same space as D(:,1:k)

Q(:,k+1:end) unselected atoms subtracted by their component in D(:,1:k)

References:
M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching
pursuit strategies", Signal Processing, Vol 86, No 3, pp. 480-495, 2006.

See also KSwapping, VFSwapping.

1.2.17 VFSwapping

Swapping based refinement of OMP methods (inner product implementation)

It interchange at each step one atom from the atomic decomposition for another atom from
the dictionary to improve the signal approximation. The process is carried out until
the approximation error will not increase. The routine is not modifying biorthogonal
functions or unselected atoms subtracted by the component in the selected space but only
several related inner product matrices. See Alg. 4b in the reference below.

Usage: VFSwapping(f, D);

Inputs:
f signal
D dictionary

These inputs and all outputs are realized through global variables AL LL LF J IJ I
I set of all indices
J set of indices (subset of I) which are not in the basis
IJ set of indices (subset of I) which are in the basis
AL inner products between dictionary D and lambdas
LL inner products between lambda(IJ), between biorthogonal functions to D(:,IJ)
LF inner products between lambda and signal f

Note: lambda(IJ) means biorthogonal functions to D(IJ)
lambda(J) means D(J) subtracted by their component in selected basis D(IJ)

References:
M. Andrle and L. Rebollo-Neira, "A swapping-based refinement of orthogonal matching
pursuit strategies", Signal Processing, Vol (86,3), 480-495 (2006).

See also Swapping, KSwapping.

18

Chapter 2

Lq Minimization

2.1 Function-Summary

ALqMin adaptive lq like minimization
LqFOCUSS solves for x in f = Dx by minimizing the lqq norm by the method

FOCUSS
RegFOCUSS solves for xc in f = Dxc by minimizing ||xc||qq + lam(f −Dxc)

2.2 Function-Description

2.2.1 ALqMin

adaptive lq like minimization

It gives an approximated solution to an underdetermined least square problem by
minimzation of the lq^q-like quatity. The algorithm evolves by adaptive selection of a
subset of normal equations as linear constraints for the minimization process [1]. The
constrained minimization is implemented by the function LQ_FOCUSS, which applies the
FOCUSS algorithm [2].

Usage: [xc] = ALqMin(fw, U, q);
[xc, ki, resn] = ALqMin(fw, U, q, tol, No, itmax);

Inputs:
fw data to be modeled by fw~U*xc
U matrix in the model above
q specifies the value q for the lq norm
tol the routine will stop if norm(fw-U*xc)<tol (default tol=1e-8)
No maximum number of constraints (stopping condition) (default No=size(U,2))
itmax maximal number of iterations for the focuss algorithsm (default itmax=30)

Outputs:
xc solution of the lq minimization
Nc total number of normal equations that have been considered
resn value of norm(fw-U*xc)*sqrt(delta)

References:
[1] L. Rebollo-Neira and A. Plastino, Nonlinear non-extensive approach for
identification of structured information, Physica A, 2009
[2] B.D. Rao and K. Kreutz-Delgado, An Affine Scaling Methodology for Best Basis
Selection, IEEE Trans. Sig. Proc. 47 (1999) 187--200

19

2.2.2 LqFOCUSS

solves for x in f = Dx by minimizing the lqq norm by the method FOCUSS

Usage: [xc] = LqFOCUSS(f, D, xo, q)
[xc] = LqFOCUSS(f, D, xo, q, tol, itmax)

Inputs:
f data modelled as f= D xc
D matrix in the model
xo initial solution
q value for q in the lq norm like measure
tol tolerance for convergence (default tol = 1e-8)
itmax maximum number of iterations (default itmax=30)

Outputs:
xc solution of minimum lq norm in the model f= D*xc

Reference
[1] B.D. Rao and K. Kreutz-Delgado, An Affine Scaling Methodology for Best Basis
Selection, IEEE Trans. Sig. Proc. 47 (1999) 187--200

2.2.3 RegFOCUSS

solves for xc in f = Dxc by minimizing ||xc||qq + lam(f −Dxc)

It applies the algorithm given in FOCUSS [1]

Usage: [xc] = RegFOCUSS(f, D, q)
[xc] = RegFOCUSS(f, D, q, lam, tol, itmax, xo)

Inputs:
f data modelled as f= D xc
D matrix in the model
q value for q in the lq norm like measure
lam regularization parameter (default lam = 1e-8)
tol tolerance for convergence (default tol = 1e-8)
itmax maximum number of iterations (default itmax=30)
xo initial solution (default all the entris equal to 1)
[] can be used for itmax, tol and lam

Outputs
xo regularized solution of f= D xc

References
[1] B.D. Rao, K. Engan, S. F. Cotter, J. Palmer, K. Kreutz-Delgado, Subset selection
in noise based on diversity measure minimization, IEEE Transactions on Signal
Processing, 51, 3 (2003) 760-- 770, 10.1109/TSP.2002.808076.

20

Chapter 3

Examples

3.1 Example-Summary

exa OBOMP using the OBOMP function
exa OOMPKSwaps improves upon the OOMP approximation by k swappings
exa chirp adapted spline approximation of the chirp signal

3.2 Example-Description

3.2.1 exa OBOMP

using the OBOMP function

It separates the component fv in V from f=fv+fw; with fw in WC (uses OBOMP)

3.2.2 exa OOMPKSwaps

improves upon the OOMP approximation by k swappings

Creates a cardinal B-spline dictionary and a the signal f as a random superposition of
95 splines. Calls OOMP_KSWAPS (which uses KSwapping) to improve the OOMP approximation
by k swappings, untill tols=1e-9*norm(f) is reached.

3.2.3 exa chirp

adapted spline approximation of the chirp signal

This example generates a nonuniform spline space adapted to a chirp signal and
constructs a dictionary for sparse approximation of the chirp through refinements of
OOMP and OMP approaches.

21

Part II

Projectors and Duals

22

Chapter 4

Projectors

4.1 Function-Summary

ObliProj constructs an oblique projection matrix onto the span of the columns of
V along the span of the columns of Wperp

OptObliProj regularizes the oblique projector of a give signal by truncation of singular
values

OrthProj construct an orthogonal projection matrix onto the span of the columns
of D.

RegObliProj regularizes the oblique projection of a given noisy signal by truncation
of singular valueas

4.2 Function-Description

4.2.1 ObliProj

constructs an oblique projection matrix onto the span of the columns of V along the span of the columns of
Wperp

for opt=[1,1] computes the projector as E=V*W, where W=pinv(U’*V)*U’
with U=V-orth_proj_{Wperp} V

for opt=[2,1] computes the projector as E=V*W, where W=pinv(U’*U)*U’
with U=V-OrthProj_{Wperp} V

for opt=[3,1] computes the projector as E=V*W, where W=pinv(U)’
with U=V-OrthProj_{Wperp} V

for opt=[1,2] computes the projector as E=V*W, where W=pinv(Q’*V)*Q’
with U=V-OrthProj_{Wperp} and Q=DREOr(U)

for opt=[1,3] computes the projector as E=V*W, where W=pinv(Q’*V)*Q’
with U=V-OrthProj_{Wperp} and Q=qr(U)

for opt=[1,4] computes the projector as E=V*W, where W=pinv(Q’*V)*Q’
with U=V-OrthProj_{Wperp} and Q=orth(U)

for opt=[2,2] computes the projector as E=V*W, where W=pinv(Q’*U)*Q’
with U=V-OrthProj_{Wperp} and Q=DREOr(U)

for opt=[2,3] computes the projector as E=V*W’, where W’=pinv(Q’*U)*Q’
with U=V-OrthProj_{Wperp} and Q=qr(U)

23

for opt=[2,4] computes the projector as E=V*W’, where W’=pinv(Q’*U)*Q’
with U=V-OrthProj_{Wperp} and Q=orth(U)

Usage: [W, U, E] = ObliProj(V, Wperp, opt, tol, ind);
[W, U, E] = ObliProj(V, Wperp);

Inputs:
V matrix the columns of which span then space to project onto
Wperp matrix the columns of which span then space to project along
opt array to chose the method to calculate the projector (see above) default

opt=[3,1]
tol if opt=[1,2], or [2,2] tol is the torance set for considering linearly

independent columns [default tol= 1.0000e-7]
ind (optional) the indices of vectors to start the orthogonalization (see DREOr)
[] can be used for ind, tol and opt

Outputs:
W matrix producing E=U*W;
U matrix producing E=U*W;
E Projector onto span of columns of V onto columns of Wperp

see orth DREOrp DREOr qr

4.2.2 OptObliProj

regularizes the oblique projector of a give signal by truncation of singular values

The projection of f onto span of V along span of WC is regularized by truncation of
singular values- the number of singular values is decided by minimizing:

||P_W f’ - P_W E_{VWC}f’||

where P_W is the orthogonal projector onto W (the orthogonal complement of span WC) and
E_{V,WC}) is the oblique projector onto span V along span WC.

Usage: [fe, c, lm] = OptObliProj(D, WC, f, opt, eps);
[fe, c, lm] = OptObliProj(D, WC, f);

Inputs:
V matrix, the columns of which span the space to project onto
WC matrix, the columns of which span the space to project along
f vector, with signal to be projected
opt equivalent role as in ObliProj and (for details see there) but some of them

may not always be good here default opt=[3,1].
eps minimum eigenvalue to be considered nonzero
[] can be used for eps or/and opt

Outputs:
fe regularized oblique projection of f
c coefficients in the decomposition fe=V*c
lm resulting number of nonzero eigenvalues to calculate fe

See also ObliProj RegObliProj OrthProj

4.2.3 OrthProj

construct an orthogonal projection matrix onto the span of the columns of D.

24

for opt=1 it uses the matlab function orth to orthogonalize D
for opt=2 it uses the routine DREOrp (recommended when the columns of D are quasi

Linearly Dependent up tolerance tol, see DREor)
for opt=3 it uses the QR decomposition matlab function.

Usage: [P, Q] = OrthProj(D, opt, tol, ind);
[P, Q] = OrthProj(D);

Inputs:
D matrix the columns of which is a dictionary of normalized atoms
opt to chose the method to calculate the projector (see above) default for opt=3
tol (optional) the tolerance set for considering linearly dependant columns

[default tol = 1.0000e-7]
ind (optional) the indices of vectors to start the orthogonalization (see DreOr)

Outputs:
Q Orthogonal vectors such that P=Q*Q’
P Projector onto span of the columns of Q

See also DREOrp DREOr qr orth

4.2.4 RegObliProj

regularizes the oblique projection of a given noisy signal by truncation of singular valueas

The regularization tries to fulfill:

||P_W f’ - P_W E_{VWC}f’||\le || P_W err’||,

where P_W is the orthogonal projector onto W (the orthogonal complement of span WC) and
E_{V,WC} is the oblique projector onto span V along span WC.

Usage: [fe, c, lm] = RegObliProj(D, WC, f, err, opt, No);
[fe, c, lm] = RegObliProj(D, WC, f);

Inputs:
V matrix, the columns of which span the space to project onto
WC matrix, the columns of which span the space to project along
f vector, with signal to be projected
opt equivalent role as in ObliProj (for details see there) default opt=[1,2] (with

tol_orth= 1e-7 for DREOr)
err (optional) error of each point of f, or tolerance for the error’s norm default

err=ones(size(f))*5e-7
No maximum number of eigenvalues to consider default all
[] can be used for err, opt, or No

Outputs:
fe regularized oblique projection of f

c coefficients in the decomposition fe=V*c
lm resulting number of nonzero eigenvalues to calculate fe

25

Chapter 5

Duals

5.1 Function-Summary

BioBack deletes the requested vector j from a given basis taken from a dictionary
BioDictDel deletes a vector from a basis selected from a given dictionary and appro-

priately modifies biorthogonal functions, orthonormal functions span-
ning the same space as the basis, and unselected dictionary atoms sub-
tracted by their components in the selected basis.

BioDictIns enlarges a basis selected from a given dictionary by one vector
BioFor enlargers the dual/biorthogonal basis enlarger by one vector
BioInsert adds an atom to a basis. It also appropriately modifies the corresponding

biorthogonal basis and orthonormal basis (obtained by modified Gram-
Schmidt).

DRE Dictionary Redundancy Elimination
DREOr uses DRE method to produce and orthogonal basis from a dictionary

and gives dictionary’s indices of the atoms spannig the space.
DREOrp uses Dre method to produce and orthogonal basis from a dictionary.
FrDelete deletes the requested vector from a given frame
FrInsert adds a vector to a frame. It also appropriately modifies the correspond-

ing dual frame.
FrInsertBlock adds vectors to a basis and gives the duals spanning the same space
NBioDictIns enlarges a basis selected from a given dictionary by one vector. It mod-

ifies the biorthogonal basis for the same space and gives the projection
of the remainding atoms onto the orthogonal complementary space

NBioInsert adds an atom to a basis and modifies the biorthogonal basis for the same
space

5.2 Function-Description

5.2.1 BioBack

deletes the requested vector j from a given basis taken from a dictionary

Modifies the corresponding biorthogonal basis and orthonormal basis (obtained by
modified Gram-Schmidt) and retuned the re-ordered dictionary (this is the only diference
with biodelete, which does not deal with the whole dictionary).

Usage: [D, psin, beta] = BioBack(D, psin, beta, j);

Inputs:
D Dictionary, first kb vectors D(:,1:kb) are the selected basis

26

psin orthonormal basis spanning the same space as D(:,1:kb) kb=size(psin,2
beta biorthogonal basis to D(:,1:kb), kb=size(beta,2)
j index of function to eliminate

Outputs:
D updated (rearranged) dictionary (D(:,1:kb-1) is the new basis)
psin updated orthonormal basis spanning the same space as D(:,1:kb-1)
beta updated biorthogonal basis to D(:,1:kb-1)

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).

See also NBioDelete, NBioDictDel, BioDictDel.

5.2.2 BioDictDel

deletes a vector from a basis selected from a given dictionary and appropriately modifies biorthogonal functions,
orthonormal functions spanning the same space as the basis, and unselected dictionary atoms subtracted by
their components in the selected basis.

The dictionary is then rearranged to have one to one correspondence with beta (dual
functions) and psin.

Usage: [D, psin, beta] = BioDictDel(D, psin, beta, j);

Inputs:
D dictionary, first kb functions are the selected basis
psin psin(:,1:kb) orthonormal functions spanning the same space as D(:,1:kb)

psin(:,kb+1:end)=D(:,kb+1:end) without component from D(:,1:kb)
beta kb biorthogonal functions to D(:,1:kb), kb=size(beta,2)
j index of function to eliminate

Outputs:
D updated (rearranged) dictionary
psin psin(:,1:kb-1) updated (recalculated) orthonormal functions spanning the same

space as the chosen atoms psin(:,kb:end) updated (recalculated) unchosen
dictionary atoms subtracted by their components in the selected basis.

beta updated biorthogonal functions to D(:,1:kb-1)

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).

See also: NBioDictDel, BioDelete, NBioDelete.

5.2.3 BioDictIns

enlarges a basis selected from a given dictionary by one vector

It appropriately modifies the biorthogonal functions and unselected dictionary atoms
subtracted by their components in the selected basis. It also updates the set of
orthonormal functions spanning the same space as chosen atoms.

Usage: [Q, beta] = BioDictIns(D, Q, beta, k);

Inputs:
D dictionary, rearranged in such way that D(:,1:k-1) are the selected atoms

27

D(:,k) is the atom to add into the basis
Q Q(:,1:k-1)= orthonormal basis to D(:,1:k-1) Q(:,k:end)=D(:,k:end) without

component from D(:,1:k-1)
beta biorthogonal functions to D(:,1:k-1)
k k-th atom of D to incorporate it says that first k-1 atoms are already in

basis

Outputs:
Q Q(:,1:k)= orthonormal basis to D(:,1:k) Q(:,k+1:end)=D(:,k+1:end) without

component from D(:,1:k)
beta updated biorthogonal functions to D(:,1:k)

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).

See also NBioDictIns, BioInsert, NBioInsert.

5.2.4 BioFor

enlargers the dual/biorthogonal basis enlarger by one vector

It modifies the biorthogonal basis and updates the set of orthonormal vectors spanning
the same space as the the enlaged basis.

Usage: [Q, beta] = BioFor(D, Q, beta, k);

Inputs:
D dictionary, rearranged in such way that D(:,1:k-1) are the basis vectors and

D(:,k) is the atom to add into the basis
Q Q(:,1:k-1)= orthonormal basis for the span of D(:,1:k-1)
beta biorthogonal basis to D(:,1:k-1)
k k-th element of D to incorporate in the basis it implies that the first k-1

vectors are already in the basis

Outputs:
Q Q(:,1:k)= orthonormal basis for span of D(:,1:k)
beta updated biorthogonal basis to D(:,1:k)

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).

See also NBioDictIns, BioInsert, NBioInsert

5.2.5 BioInsert

adds an atom to a basis. It also appropriately modifies the corresponding biorthogonal basis and orthonormal
basis (obtained by modified Gram-Schmidt).

Usage: [D, psin, beta] = BioInsert(D, psin, beta, atom, tol);

Inputs:
D already selected basis
psin orthonormal basis spanning the same space as D
beta biorthogonal basis to D
atom new atom to be incorporated into basis
tol tolerance (optional parameter) to decide linear dependence default value =

28

1.0000e-7

Outputs:
D updated basis
psin updated orthonormal basis spanning the same space as D
beta updated biorthogonal functions to D

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).

See also NBioInsert, NBioDictIns, BioDictIns.

5.2.6 DRE

Dictionary Redundancy Elimination

With help of column pivoting it tries to choose a stable basis from a given
dictionary.

Usage: [Dnew, Di, Q, beta] = DRE(D, tol, ind);
[Dnew, Di] = DRE(D);

Inputs:
D dictionary of normalized atoms
tol tolerance set for considering as linearly dependent atom [default tol=

1.0000e-7]
ind (optional) indices determining the initial subspace
[] can be used for tol and ind

Outputs:
D sub-dictionary extracted from D containing linearly independent

atoms
Di indices of atoms in new D w.r.t to original D
Q orthonormal functions spanning the same space as new D
beta biorthogonal functions to new D

References:
L. Rebollo-Neira, "Dictionary redundancy elimination", IEE Proceedings - Vision, Image
and Signal Processing, Vol(151,1), 31-34 (2004).

See also DREOr DREOrp Biorthog.

5.2.7 DREOr

uses DRE method to produce and orthogonal basis from a dictionary and gives dictionary’s indices of the atoms
spannig the space.

The difference with DREOrp is that it gives Di (see below)

Implement column pivoting to choose a stable orthogonal basis from a given set, which
could be redundant, called "dictionary"

Usage: [Q, Di] = DREOr(D, tol, ind);
[Q, Di] = DREOr(D, tol);
[Q, Di] = DREOr(D);

Inputs:

29

D matrix the columns of which is a dictionary of normalized atoms
tol tolerance set for considering as linearly dependent columns [default tol=

1.0000e-7]
ind (optional) indices determining the initial subspace
[] can be used for tol and ind

Outputs:
Q orthonormal vectors spanning the same space as D (up to tol)
Di indices of linearly independent atoms that have been orthogonalized

References:
L. Rebollo-Neira, "Dictionary redundancy elimination", IEE Proceedings - Vision, Image
and Signal Processing, Vol(151,1), 31-34 (2004).

See also DRE DREOrp and Biorthog

5.2.8 DREOrp

uses Dre method to produce and orthogonal basis from a dictionary.

The only difference with DREOr is that this only gives Q so it is a bit faster

implement column pivoting to choose an stable orthogonal basis from a given set, which
could be redundant, called "dictionary"

Usage: [Q] = DREOr(D, tol, ind);
[Q] = DREOr(D);

Inputs:
D matrix the columns of which is a dictionary of normalized atoms
tol tolerance set for considering as linearly dependent columns [default tol=

1.0000e-7]
ind (optional) indices determining the initial subspace
[] can be used for tol and ind

Outputs:
Q orthonormal vectors spanning the same space as D, up to tolerance tol

References:
L. Rebollo-Neira, "Dictionary redundancy elimination", IEE Proceedings - Vision, Image
and Signal Processing, Vol(151,1), 31-34 (2004).

See also DREOr DRE

5.2.9 FrDelete

deletes the requested vector from a given frame

It appropriately modifies the corresponding duals "beta", the updating
depends on whether the vector "num" belongs to the remaining frame or not

Usage: [D,beta]=nfrdelete(D,beta,num);
Usage: [D,beta]=nfrdelete(D,beta,num,ic);

Inputs:
D frame
beta dual frame
num index of the vector to be eliminated

30

ic = 1 if linearly independent (linearly dependent otherwise)

Outputs:
D reduced frame
beta updated dual frame (for the reduced D)

References:
L. Rebollo-Neira, ‘‘Constructive updating/downdating of oblique projectors: a generalization of the Gram-Schmidt process’’, Journal of Physics A: Mathematical and Theoretical,

Vol(40), 6381-6394 (2007).

See http://www.ncrg.aston.ac.uk/Projects/HNLApprox/ for more details

5.2.10 FrInsert

adds a vector to a frame. It also appropriately modifies the corresponding dual frame.

Usage: [D,beta]=nfrinsert(D,beta,atom,tol);

Inputs:
D frame
beta dual frame to D
atom new vector to be incorporated into the frame
tol tolerance (optional parameter) to decide linear dependence

default value = 1.0000e-7
dual if atom is linearly dependent dual is an arbitrary vector

default dual=atom

Outputs:
D updated frame
beta updated dual frame of D

References:
[1] L. Rebollo-Neira, ‘‘Constructive updating/downdating of oblique projectors: a generalization of the Gram-Schmidt process’’,

Journal of Physics A: Mathematical and Theoretical}, Vol(40), 6381-6394 (2007)

This routine is equivalent to NBioInsert if the new atom is independent

see http://www.ncrg.aston.ac.uk/Projects/HNLApprox/

5.2.11 FrInsertBlock

adds vectors to a basis and gives the duals spanning the same space

Usage: [D,beta]=FrInsertBlock(D,beta,gb,tol);

Inputs:
D basis
gb new vectors to be incorporated into the basis
tol tolerance (optional parameter) to decide linear dependence

default value = 1.0000e-7

Outputs:
D updated basis
beta updated biorthgonal basis

or http://www.ncrg.aston.ac.uk/Projects/HNLApprox/

31

5.2.12 NBioDictIns

enlarges a basis selected from a given dictionary by one vector. It modifies the biorthogonal basis for the same
space and gives the projection of the remainding atoms onto the orthogonal complementary space

Usage: lambda = NBioDictIns(D, lambda, k);

Inputs:
D dictionary, D(:,1-k-1) is the selected basis
lambda lambda(:,1:k-1)=biorthogonal functions to D(:,1:k-1)

lambda(:,k:end)=D(:,k:end) without component from D(:,1:k-1)
k k-th atom of D to incorporate it says that first k-1 atoms are already in

basis

Outputs:
lambda lambda(:,1:k)=biorthogonal functions to D(:,1:k)

lambda(:,k+1:end)=D(:,k+1:end) without component from D(:,1:k)

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).

Note: the difference between this routine and BioDictIns is that in this routine the
orthonormal basis spanning D(:,1:k) is not available

See also BioDictIns, BioInsert, NBioInsert.

5.2.13 NBioInsert

adds an atom to a basis and modifies the biorthogonal basis for the same space

Usage: [D, beta] = NBioInsert(D, beta, atom, tol);

Inputs:
D already selected basis
beta biorthogonal functions to D
atom new atom to be incorporated into basis
tol tolerance (optional parameter) to decide linear dependence default value =

1.0000e-7

Outputs:
D updated basis
beta updated biorthogonal functions to D

References:
L. Rebollo-Neira, "Recursive bi-orthogonalisation approach and orthogonal projectors",
math-ph/0209026 (2002).

See also BioInsert, NBioDictIns, BioDictIns.

32

Chapter 6

Examples

6.1 Example-Summary

exa ObliProj using ObliProj
exa OptObliProj using OptObliProj
exa RegObliProj using RegObliProj

6.2 Example-Description

6.2.1 exa ObliProj

using ObliProj

Separates the components f_v in V from f=f_v+f_w; with f_w in WC.

6.2.2 exa OptObliProj

using OptObliProj

Separates the component fv in V from f=fv+fw; with fw in WC.

6.2.3 exa RegObliProj

using RegObliProj

Separates the component fv in V from f=fv+fw; with fw in WC.

33

Part III

Image Processing Tools

34

6.3 Function-Summary

CalcPSNR returns the PSNR between the original image and its approximation
DCos generates a matrix whos columns are discrete cosine vectors.
DetectLines returns the index of vertical impulsive lines in an image
GenerateHats Generates a hat dictionary
GenerateTrapezium generates a vector representing a trapezium
ImageApproximation Returns an approximation of an image generated by choosing atoms from

dictionary using either thresholding or a greedy algorithm.
RemoveDependantAtoms removes any dependant atoms from a given dictionary
TranslatePrototype translates a vector to construct either a dictionary or a basis

6.4 Function-Description

6.4.1 CalcPSNR

returns the PSNR between the original image and its approximation

Calculates the Peak Signal to Noise Ratio (PSNR) between 2 matrices containing
pixel intensity values.

Usage: psnr = CalcPSNR(mImage1, mImage2);

Inputs:
mImage1 matrix of pixel intensity values representing the original image
mImage2 matrix of pixel intensity values representing the approximated image
maxIntensity maximum allowed pixel intensity, defualt is 256 (8 bit image)

Outputs:
psnr the PSNR resulting from the approximation

6.4.2 DCos

generates a matrix whos columns are discrete cosine vectors.

Returns discrete cosine vectors that belong to the Euclidean space of size szSpace. The
deafult is to return a basis for the space.

Usage mCosines = DCos(szSpace, nFrequencies, redundancy);
mCosines = DCos(szSpace, nFrequencies);
mCosines = DCos(szSpace);

Inputs:
szSpace the size of the Euclidean space the vectors should belong to
nFrequencies number of frequencies to use starting from 0. If not specified will

be the same as the size of the space
redundancy redundancy of the dictionary, the default is 1 (basis)

Outputs:
mCosines matrix whos columns are discrete cosine vectors.

6.4.3 DetectLines

returns the index of vertical impulsive lines in an image

Searches a matrix representing the pixel intensities of an image for columns where all
the values are equal to lineValue. Note this will also return the index of vertical

35

edges.

Usage: iLine = DetectLines(mImage, lineValue);
iLine = DetectLines(mImage);

Inputs:
mImage double matrix representing image pixel intensities
lineValue value to search for default is 0.

Outputs:
iLine vector containing the index’s of the columns of mImage containing vertical

lines

6.4.4 GenerateHats

Generates a hat dictionary

Builds a dictionary for a space of size szSpace from one or more hat dictionaries or
basis, where the length of there support is given in the vectot hats.

Usage: mHatDictionary = GenerateHats(hats, szSpace, dictionary);

Inputs:
hats vector of support lengths for each dictionary
szSpace number of discrete points in each atom
dictionary set to 0 if the dictionary is composed from several hat basis, or 1 if

it is composed from several hat dictionaries

Outputs:
mHatDictionary matrix whose columns are the atoms fromt he hat dictionaries

6.4.5 GenerateTrapezium

generates a vector representing a trapezium

Generates a discrete vector of points representing the vertical distance between
the base of an isosceles trapezium and the other three sides. You choose the length
of the trapeziums base, this will 2 less than the size of vTrapezium as the base
values are zero. You also choose the length of the trapeziums top.

Usage: vTrapezium = GenerateTrapezium(lBase, lTop);
vTrapezium = GenerateTrapezium(lBase);

Inputs:
lBase number of discrete points for the trapeziums base
lTop number of discrete points for the trapeziums top, the default is 1

Outputs:
vTrapezium column vector of points representing the vertical distance between

the base of an isosceles trapezium and the other three sides.

See also TranslatePrototype

6.4.6 ImageApproximation

Returns an approximation of an image generated by choosing atoms from dictionary using either thresholding
or a greedy algorithm.

36

Usage: [mImageApprox, mNCn, mCn, mICn, actualPSNR, processingTime, ...
mError] = ImageApproximation(mImage, mAtoms, algorithm, ...
criteria, blockWidth);

Inputs:
mImage the matrix of pixel intensity values
mAtoms matrix whos columns are the atoms from the dictionary we use to

approximate the image with
algorithm name of the algorithm to use
criteria the target psnr between the original image and its approximation if using

a greedy algorithm or the threshold if using Thresholding
blockWidth width of the square blocks that the image will be processed in

Outputs:
mImageApprox matrix representing the approximated image
mNCn matrix containing the number of coefficients used to represent each

block of the image
mICn array containing the index’s of the retained coefficients
actualPSNR psnr between the original image and its approximation
processingTime time in seconds to process the image
mError matrix containing the norm of the error between the original image and

the approximated image for each block processed.

6.4.7 RemoveDependantAtoms

removes any dependant atoms from a given dictionary

Normalises the dictioanry and then removes any atoms that have an inner product of
within tol of 1.

Usage: [mUniqueDictionary iRemovedAtoms] = RemoveDependantAtoms(...
mDictionary, tol);

[mUniqueDictionary iRemovedAtoms] = RemoveDependantAtoms(...
mDictionary);

Inputs:
mDictionary dictionary of atoms
tol tolerance of how similar atoms can be, default is 1e-13

Outputs:
mUniqueDictionary dictionary with dependant atoms removed
iRemovedAtoms index of the dependant atoms

6.4.8 TranslatePrototype

translates a vector to construct either a dictionary or a basis

Constructs a matrix whos columns are vectors forming either a redundant dictionary
or a basis for the Euclidean space of dimension szSpace. Each vector is generated
by translating one point at a time the discrete values contained in vPrototype,
i.e.
szSpace = 3;
vPrototype = [1];
mVectors = [1 0 0;

0 1 0;
0 0 1];

37

If dictionary is not specified or set to 1 we apply the ’cut off’ approach to
create a dictionary for the space i.e.
dictionary = 1;
szSpace = 3;
vPrototype = [1 1];
mVectors = [1 0 0;

1 1 0;
0 1 1;
0 0 1]

If dictionary is set to 0 we adopt cyclic boundry conditions to create a basis for
the space, i.e.
dictionary = 0;
szSPace = 3;
vPrototype = [1 1];
mVectors = [1 1 0;

0 1 1;
1 0 1];

Usage: mVectors = TranslatePrototype(vPrototype, szSpace, dictionary);
mVectors = TranslatePrototype(vPrototype, szSpace);

Inputs:
vPrototype vector representing the shape to be translated.
szSpace size of the Euclidean space we want to span.
dictionary 0 to generate a basis and 1 to generate a redundant dictionary for

the space, the default is to generate a dictionary.

Outputs:
mVectors matrix whos columns span the space of dimension szSpace

See also GenerateTrapezium

6.5 Examples

6.6 Example-Summary

exa image approximation approximating an image using OMP
exa impulse removal Elimination of random lines from an image using the function OOMP-

FinalRefi()

6.7 Example-Description

6.7.1 exa image approximation

approximating an image using OMP

Example of using the OMP algorithm to approximate the image of Lena using a dictionary
comprised from a deiscrete cosine redundancy 2 dictionary and hat dictionaries of
support 1, 3 and 5.

6.7.2 exa impulse removal

Elimination of random lines from an image using the function OOMPFinalRefi()

Removes random vertical lines from an image by projecting onto atoms chosen from a

38

spline wavelets dictionary using OOMPFinalRefi().
Construct the Spline Wavelet Dictionary

39

Part IV

Spline Dictionaries

40

Chapter 7

Uniform

7.1 Function-Summary

BSpline gives the analytical form of k-th B-spline of order m on l-th subinterval
of given partition t

DictSpline generates dictionary of cardinal B-spline functions of order m
Differ calculates (s-1)-th divided difference of max((t − x)(m − 1), 0) where s

is the number of knots in sequence t (i.e., s=length(t))
ErrorTest tests orthogonality of a sequence or biorthogonality of two sequences.
Green calculates (x+)m = xm for x >= 0 (it is 0 for x < 0). This functions is

known as truncated powers.
NormDict normalizes a given dictionary
SplineLevel generates a B-spline dictionary depending on given parameters
SymSpline gives the analytical form of B-spline of order m with knots in partition t
TSpline generates B-spline basis of order m corresponding to knot sequence t

7.2 Function-Description

7.2.1 BSpline

gives the analytical form of k-th B-spline of order m on l-th subinterval of given partition t

Usage: f = BSpline(m, k, l, t);
f = BSpline(m, k, l);

Inputs:
m order of spline (m>=1), m=1 is a piecewise constant function
k specifies the index of spline, B-spline living on on I=[t(k),t(k+m)] is

calculated if the sequence of knots t is not defined then
I=t(k:k+m)=[k-1,k-1+m]

l specifies the interval [t(l),t(l+1)] on which the k-th B-spline is studied
t sequence of knots (optional)

if t is a single number then the sequence is considered to be t:t+m
if t not specified then t=k-1:k-1+m

Output:
f analytical form of k-th B-spline of order m on l-th subinterval of t

References:
L.L. Schumaker, Spline Functions: Basic Theory, New York, Wiley, 1981.

41

Remark: It is not recommended to use this procedure by user. You can do
the same using SymSpline.

7.2.2 DictSpline

generates dictionary of cardinal B-spline functions of order m

Usage: D = DictSpline(m, L, sp, b1, b2, type);

Inputs:
m order of spline functions (m>=1), m=1 is a piecewise constant function
L number of discrete points
sp vector [sp(1),sp(2)] specifying the interval
b1 coarser partition of sp, points sp(1)+k*b1, k=0
b2 finer partition of sp, points sp(1)+k*b2, k=0
type either ESEP or EPKB

Output:
D dictionary of cardinal B-spline functions of order

Remark: This procedure uses the translation property of inner cardinal B-splines.
It calls the routine SplineLevel to do the job.

7.2.3 Differ

calculates (s-1)-th divided difference of max((t−x)(m−1), 0) where s is the number of knots in sequence t (i.e.,
s=length(t))

Usage: f = Differ(x, t, m);

Inputs:
x dicrete variable
t knot sequence
m order

Output:
f (s-1)-th divided difference of max((t-x)^(m-1),0)

Remark: Sequence t must be ordered.

7.2.4 ErrorTest

tests orthogonality of a sequence or biorthogonality of two sequences.

Usage: errortest(D, beta);
errortest(Q);

Inputs:
D sequence of vectors
beta (optional) biorthogonal sequence

Output:
f orthogonality of D or biorthogonality D w.r.t beta

7.2.5 Green

calculates (x+)m = xm for x >= 0 (it is 0 for x < 0). This functions is known as truncated powers.

42

Usage: f = Green(x, m);

Inputs:
x discrete variable
m order

Output:
f (x_+)^m (see definition of this above)

References:
L.L. Schumaker, Spline Functions: Basic Theory, New York-Wiley, 1981.

7.2.6 NormDict

normalizes a given dictionary

Usage: D = NormDict(D, delta);
D = NormDict(D);

Inputs:
D non-normalized dictionary
delta parameter, the discrete norm of D is multiplied by sqrt(delta)

(default value is 1)
Outputs:

D normalized dictionary

Remark: It normalizes the columns of matrix D.

7.2.7 SplineLevel

generates a B-spline dictionary depending on given parameters

Usage: D = SplineLevel(m, x, b1, b2, type);

Inputs:
m order of splines
x discrete variable
b1 coarser partition of sp, points sp(1)+k*b1, k=0
b2 finer partition of sp, points sp(1)+k*b2, k=0
type either ESEP or EPKB

Output:
D dictionary of spline functions

References:
M. Andrle and L. Rebollo-Neira, "Cardinal B-spline dictionaries on a compact
interval", Applied and Computational Harmonic Analysis, Vol(18,3), 336-346 (2005).

7.2.8 SymSpline

gives the analytical form of B-spline of order m with knots in partition t

Usage: [f, p] = SymSpline(m, t);
[f, p] = SymSpline(m);

Inputs:
m order of spline (m>=1), m=1 is a piecewise constant function
t sequence of knots (optional)

43

if t is a single number then the sequence is considered to be t:t+m
if t not specified, t=0:m

Outputs:
f array of m symbolical polynomials, each polynomial describes the desired

B-spline on the subinterval [t(i),t(i+1)], i=1,...,m
p matrix of coefficients for polynomials expressed in f,

each row in this matrix represents a_{m-1}, ..., a_0 for
polynomials written as a_{m-1}x^{m-1}+...+ a_0

Remark: If length of t is bigger than m+1, this procedure takes in account
only first m+1 knots of t

References:
L.L. Schumaker, Spline Functions: Basic Theory, New York, Wiley, 1981.

7.2.9 TSpline

generates B-spline basis of order m corresponding to knot sequence t

Usage: D = TSpline(x, t, m);

Inputs:
x variable range (discrete points)
t knot sequence (could be multiple knots)
m order of splines (m=1 means a piecewise constant functions)

Output:
D B-spline function basis corresponding to knot sequence t

Remark: The sequence t is sorted before calculation.

References:
L.L. Schumaker, Spline Functions: Basic Theory, New York, Wiley, 1981.

44

Chapter 8

Non Uniform

8.1 Function-Summary

CutDic produces a non-uniform B spline dictionary
NonBSpline Computes the value of B spline basis at x0 by the recurrence formula for

the non-uniform B spline.
NonUniB computes all non-unfirom B spline over the partition ’p’
ProducePartition using the curvature of the signal f, it compute the knots of a partition

8.2 Function-Description

8.2.1 CutDic

produces a non-uniform B spline dictionary

Usage: D = CutDic(partition, m, L, level);

Inputs:
partition a partition to produce a non-uniform B spline dictionary (it can be

computed by the function ’producepartition’)
m the order of the spline
L the number of the sampling of the functions
level it is related with the width of the B spline basis. When level=1, the

function outputs the B spline basis.

Outputs:
D the non-uniform B spline dictionary (matrix)

8.2.2 NonBSpline

Computes the value of B spline basis at x0 by the recurrence formula for the non-uniform B spline.

Usage: re = NonBSpline(m, t, x0);

Inputs:
m the order of splines
t the partition (the number of entris in t is m+1)
x0 the point for computing

Outputs:
re the value of B spline at x0

45

8.2.3 NonUniB

computes all non-unfirom B spline over the partition ’p’

Usage: D = NonUniB(a, b, m, p, L);

Inputs:
a,b the end points of the interval
m the order of the spline
p the partition
L the number of the sampling of the functions

Outputs:
D the non-uniform B spline over the partition p (matrix, D(:,j) denots jth

B spline basis)

8.2.4 ProducePartition

using the curvature of the signal f, it compute the knots of a partition

Usage: partition = ProducePartition(a, b, f, cut);

Inputs:
a,b the end points of the interval
f signal
cut sub-divided level of the partition.

Outputs:
partition the knots of the partition. The first entry is a and the last one is b

46

Chapter 9

Wavelets

9.1 Function-Summary

BuildDict helps you to construct a multiresolution-like spline wavelet dictionary or
a B-spline dictionary

ElimBound eliminates redundant boundary wavelets to have a basis for the cut-off
spline wavelet dictionary constructed with b=1

GDictFast generates dictionaries by translating prototype functions
NumFun states how many functions f(aj ∗ x− b ∗ k), where k is an integer, have

non-trivial intersection with the interval [c, d]
SPL generates B-splines of order m at scale j with translation parameter k,

B(aj ∗ x − k). Multiple knots for construction boundary functions are
considered.

STPoint returns such a translation parameter k that f(aj ∗ x− b ∗ k) is the first
function having non-trivial intersection with the point c

ScalLevel generates a set of all translated B-splines, B(aj ∗ x − b ∗ k), having
non-trivial intersection with the given interval. It can be also used for
construction (Chui) cubic B-spline basis (for b = 1 only).

SplineChuiWav generates the Chui semi-orthogonal cubic spline wavelet, w(aj ∗ x − k)
on the given interval.

SplineScal generates dilated/translated B-spline, B(aj ∗ x − b ∗ k), of order m on
the given interval.

SplineWavelet generates semi-orthogonal spline wavelet, w(aj ∗ x− b ∗ k), of order 1, 2
or 4 on the given interval

WavLevel generates a set of all translated spline wavelets, w(aj ∗ x− b ∗ k), having
non-trivial intersection with the given interval. It can be also used for
construction (Chui) cubic B-spline wavelet basis (for b = 1 only).

9.2 Function-Description

9.2.1 BuildDict

helps you to construct a multiresolution-like spline wavelet dictionary or a B-spline dictionary

To create a dictionary of your choice, edit this file and set the desired values of the
variables.

Available multiresolution-like dictionaries are:

name=’1’ Haar dictionary (cut-off construction)
=’2’ linear dictionary (cut-off construction)

47

=’4’ cubic dictionary (cut-off construction)
=’chui_cubic’ cubic spline wavelet basis (multiple knots)

Available B-spline dictionaries are:

name=’1b’ piece-wise constant B-spline dictionary
=’2b’ linear B-spline dictionary (cut-off construction)
=’4b’ cubic B-spline dictionary (cut-off construction)
=’Nb’ B-spline dictionary of order N (any positive integer)
=’chui_cubicb’ cubic B-spline dictionary (multiple knots)

Description of other parameters

a dilation factor (positive integer)
b translation factor (b=1 for basis, keep 1/b being integer)

use b=1 only for ’chui_cubic’ and ’chui_cubicb’
sp array sp=[c,d] stands for interval [c,d]
j array containing all the scales to be considered

note that larger ’j’ implies finer scale
L number of points partitioning the interval sp=[sp(1) sp(2)]

it must be a positive integer value satisfying
L=J*(sp(2)-sp(1))/(b*(a^(-jmax)))+1 where jmax stands for the
finest scale to be considered and J is a positive integer

Outputs:
x dicretization of the interval sp containing L nodes
D desired dictionary
ind array of indices separating different scales in D

EXAMPLE:
The following example constructs a cubic multiresolution-like wavelet dictionary D on
the interval [0,8] with scale factor a=2, b=0.5, j=[0:4] The interval [0,8] will be
partitioned into L=2049 points.

name=’4’;b=0.5;a=2;
sp=[0 8];
j=[0:4];
L=2049;
[D, ind] =gdictfast(name,{L;sp;j;a;b});

Comments:
For B-spline dictionaries see also TestSpline
For a cut-off multiresolution-like wavelet basis see ElimBound

References:
M. Andrle and L. Rebollo-Neira, "Spline wavelet dictionaries for non-linear signal
approximation", preprint, 2005.
M. Andrle and L. Rebollo-Neira, "Cardinal B-spline dictionaries on a compact
interval", Applied and Computational Harmonic Analysis, Vol(18,3), 336-346 (2005).
C.K. Chui and E. Quak, "Wavelets on a Bounded Interval", in Numerical Methods of
Approximation Theory, Vol. 9 (Eds. D. Braess and L.L. Schumaker), pp. 53-75,
Birkhauser, Basel, 1992.

48

9.2.2 ElimBound

eliminates redundant boundary wavelets to have a basis for the cut-off spline wavelet dictionary constructed
with b=1

Usage: [DD, ind] = ElimBound(m, D, ind);

Inputs:
m order of splines in dictionary (positive integer)
D dictionary
ind array of final indices for every scale in D (optional)

Outputs:
DD basis, D without the redundant boundary wavelets
ind updated indices for DD

For the construction of cut-off multiresolution-like wavelet dictionaries see BuildDIct.

Note: The first scale is assumed to contain scaling functions thus the redundant
wavelets are removed from all scales except the first one.

If ind is not specified it considers only one scale (wavelets) and m-1 functions are
removed from both sides.

Comments: The support of semi-orthogonal spline wavelet of order m is given by
supp=2*m-1. Thus the number of functions to eliminate at every scale at each border is
n=(supp-1)/2=m-1.

References:
M. Andrle and L. Rebollo-Neira, "Spline wavelet dictionaries for non-linear signal
approximation", preprint, 2005.

9.2.3 GDictFast

generates dictionaries by translating prototype functions

Usage: D = GDictFast(name, pars);

Inputs:
name type of dictionary (string format)
pars parameters (cell format)

pars = {L,sp,j,a,b}
Description of the parameters

L number of points partitioning the interval sp=[sp(1) sp(2)]
sp array sp=[c d] stands for interval [c,d]
j array containing all the scales to be considered note that larger j implies

finer scale
a dilation factor (positive integer)
b translation factor (b=1 for basis, keep 1/b being integer) for ’chui_cubic’

and ’chui_cubicb’ use b=1 only

Outputs:
D desired dictionary
ind array of indices separating different scales in D

Comments:
The dictionaries are constructed in the following way: a prototype function for every
scale is computed for values x=linspace(sp(1),sp(2),L) (x is a dicretization of the

49

interval sp containing L nodes). Then this prototype function is shifted on x by an
appropriate number of nodes. For this end (L-1)*(b*a^(-jmax))/(sp(2)-sp(1)) must be
an integer where jmax stands for the finest scale parameter. In the case of ’chui_cubic’
or ’chui_cubicb’ dictionaries only the inner functions are constructed by the method
above. The boundary function are calculated using given analytical expressions.

Only scales with at least one inner function are considered.

References:
M. Andrle and L. Rebollo-Neira, "Spline wavelet dictionaries for non-linear signal
approximation", preprint, 2005.
M. Andrle and L. Rebollo-Neira, "Cardinal B-spline dictionaries on a compact interval",
Applied and Computational Harmonic Analysis, Vol(18,3) 336-346 (2005).

9.2.4 NumFun

states how many functions f(aj ∗x− b ∗ k), where k is an integer, have non-trivial intersection with the interval
[c, d]

Usage: n = NumFun(name, type, c, d, j, a, b);

Inputs:
name order of splines (positive integer) or ’chui_cubic’ (string)
type string, ’scal.f.’ for scaling functions, ’wavelet’ for wavelets
c,d the given interval [c,d]
j scale level (a^j is the dilation)
a scaling factor
b translation factor

Output:
n the number of consecutive translates f(a^j*x-b*k) having non-trivial intersection

with the interval [c,d]

9.2.5 SPL

generates B-splines of order m at scale j with translation parameter k, B(aj ∗ x − k). Multiple knots for
construction boundary functions are considered.

Usage: f = SPL(x, m, j, k, a);

Inputs:
x a dicretization of the given interval
j scale level (a^j is the dilation)
m order of splines
k translation parameter
a scale factor

Output:
f B-splines of order m at scale j with translation parameter k

Note:
The interval [x(1) x(end)] must be [0,K] type where K is an integer

9.2.6 STPoint

returns such a translation parameter k that f(aj ∗ x− b ∗ k) is the first function having non-trivial intersection
with the point c

Usage: k = STPoint(name, type, c, j, a, b);

50

Inputs:
name order of splines (positive integer) or ’chui_cubic’ (string)
type string, ’scal.f.’ for scaling functions, ’wavelet’ for wavelets
c left point of the given interval
j scale level (a^j is the dilation)
a scaling factor
b translation factor

Output:
k desired translation parameter such that f(a^j*x-b*k) is the first function

having non-trivial intersection with the point c

9.2.7 ScalLevel

generates a set of all translated B-splines, B(aj ∗x−b∗k), having non-trivial intersection with the given interval.
It can be also used for construction (Chui) cubic B-spline basis (for b = 1 only).

Usage: D = ScalLevel(name, x, j, a, b)

Inputs:
name specifies the type of splines
x a dicretization of the given interval
j scale level (a^j is the dilation)
a scaling factor
b translation factor

Available B-splines are:
name=1 piece-wise constant B-spline dictionary

=2 linear B-spline dictionary (cut-off construction)
=4 cubic B-spline dictionary (cut-off construction)
=N B-spline dictionary of order N (any positive integer)
=’chui_cubic’ cubic B-spline dictionary (multiple knots)

Output:
D set of B-splines at scale j having non-trivial intersection with the given

interval

9.2.8 SplineChuiWav

generates the Chui semi-orthogonal cubic spline wavelet, w(aj ∗ x− k) on the given interval.

Usage: w = SplineChuiWav(x, j, k, a);

Inputs:
x a dicretization of the given interval
j scale level (a^j is the dilation)
k translation parameter
a scale factor

Output:
w normalized cubic Chui semi-orthogonal spline wavelet

References:
C.K. Chui and E. Quak, "Wavelets on a Bounded Interval", in Numerical Methods of
Approximation Theory, Vol. 9 (Eds. D. Braess and L.L. Schumaker), pp. 53-75,
Birkhauser, Basel, 1992.

51

9.2.9 SplineScal

generates dilated/translated B-spline, B(aj ∗ x− b ∗ k), of order m on the given interval.

Usage: w = SplineScal(x, j, k, m, a, b

Inputs:
x a dicretization of the given interval
j,k dilation and translation parameters
a scaling factor
b translation factor
m order of spline (positive integer)

Output:
w dilated/translated B-spline of a given order

9.2.10 SplineWavelet

generates semi-orthogonal spline wavelet, w(aj ∗ x− b ∗ k), of order 1, 2 or 4 on the given interval

Usage: w = SplineWavelet(x, j, k, m, a, b);

Inputs:
x a dicretization of the given interval
j,k dilation and translation parameters
a scaling factor
b translation factor
m order of spline wavelet (1,2 or 4)

Output:
w normalized dilated/translated spline wavelet of a given order

9.2.11 WavLevel

generates a set of all translated spline wavelets, w(aj ∗ x− b ∗ k), having non-trivial intersection with the given
interval. It can be also used for construction (Chui) cubic B-spline wavelet basis (for b = 1 only).

Usage: D = WavLevel(name, x, j, a, b);

Inputs:
name specifies the type of spline wavelets
x a dicretization of the given interval
j scale level (a^j is the dilation)
a scaling factor
b translation factor

Available types of spline wavelets:
name=1 Haar dictionary (cut-off construction)

=2 linear dictionary (cut-off construction)
=4 cubic dictionary (cut-off construction)
=’chui_cubic’ cubic spline wavelet basis (multiple knots)

Output:
D set of all normalized spline wavelets at scale level j having non-trivial

intersection with the given interval

52

