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Abstract—An approach for effective implementa- Il. THE NEED FOR DEDICATED PURSUIT

tion of greedy selection methodologies, to approxi- STRATEGIES TO OPERATE ON PARTITIONS
mate an image partitioned into blocks, is proposed. . . . " .
The method is specially designed for approximating ~ APProximating an image partitioned into blocks

partitions on a transformed image. It evolves by implies having to consider some ‘communication’
selecting, at each iteration step, i) the elements for petween the blocks. The need for communication
gpproximztilr.l)gtheaﬁh of H?e g'OCks partit,ioniﬂg hthtﬁ appears when trying to decide up to what error
image and ii) the hierarchized sequence in which the ; : :
blocks are approximated to reach the required global ggch bIQCk is to be apprOXImated.. As the folllowmlg
condition on sparsity. iscussion suggests, an appropriate stopping crite-
rion for recursive approximation of blocks in the
wavelet domain needs to begéobal measure
|. INTRODUCTION Firstly let us introduce the notational convention:
) ) . R represents the sets of real numbers. Boldface
The representation of an image by a piecfnts are used to indicate Euclidean vectors or ma-
of data, of lower dimensionality than theyces whilst standard mathematical fonts indicate
pixel=intensity values, is called a sparsgo components, e.@,2 RV is a vector of compo-
representation of a compressible imag%entsc(i)' i=1:-::-N andl 2 RN Ny a matrix
Approximations using a redundant set, callegf glements (i;j,); i = 1N j =150 Ny
a dictionary, may attain high sparsity, thereby|n narticularl 2 RN« Ny will indicate an intensity
bene ting applications that range from denoisingmage ofN, Ny pixels andr2 RNx Ny its cor-

to compression [1]-[9]. Those techniques fofgegnonding wavelet transform. For square matrices
approximation which evolve by selection 0fi ¢ “\yhenN, = Ny, to shorten notation the range

dictionary elements, callecaitoms are refereed .t indices is indicated aj =1::::;Ny:

to as greedy strategies. The motivation of this consider, without loss of generality, a real, or-
Communication is to consider an effectivenogonal and separable wavelet transform, which
implementation of the Orthogonal Matchingansforms an intensity image2 RN* Ny into the
Pursuit (OMP) strategy [10] to approximate ang snsformed imag& 2 RNx Ny Thus, each of the
image in the wavelet domain. For this to bepoints M;m)in = 1;0: N m = 150Ny
computationally effective, with respect to speetk 5 Frobenius inner produdtn;m) = h

and storage demands, the transformed image . !

- - vm »11E, Where the operation indicates the
should be partitioned into small blocks. tensor product. The subscripg in  , is used to

Approximations in the wavelet domain have beepyentify an ordered pair consisting of the scale and

shown useful for image compression [S]-[7]. Inyrang|ation parameters of the corresponding mother
deed, as will be illustrated here, the approximatiopyelet . Accordingly, forn = 1:::::Ny: m =

of images which are compressible in the wavelet.. ...\

. . . . . Yy
domain results signi cantly sparser if carried out

in such a domain. In addition, while some other NNy o ]

artifacts can be caused, approximations by blocking (™M)= un (FET) va () (D)

in the wavelet domain avoid visually unpleasant i =t

blocking artifacts in the intensity image. We shall assume for simplicity a uniform partition

The letter is organized as follows: Sec. Il disand consider that a transformed imagdie,is the
cusses the need for considering a dedicated versig@mposition of Q identical and disjoint blocks
of the OMP strategy to operate on a transformdd; q=1;:::;Q. Hencel = [ qu1 Tq; where every
image. Sec. Il proposes a particular version, whicty, is a 2D block of sizeN,  Np.
is termed hierarchized block wise OMP. The ad- It is clear from (1) that points of the trans-
vantage of the proposed approach is illustrated bgrmed image corresponding to a particular block
numerical tests in Sec. IV. The conclusions aref size N, Ny contain some global information
summarized in Sec. V. about the intensity image. This suggests that a



suitable stopping criterion for the approximatiorThe coef cients in (2) are obtained from the inner
of a partition in the wavelet domain needs tgroductscte:d(n) = rB';q;q;rti; n=1;:::Kq:
be a global measure. Consequently, even if the For a given nu,mbeK, the algorithm iterates
approximation of each block, as such, is carriedntil the condition Q:1 kq = K, is met. In other
out independently of the others, a greedy selectiamords, the algorithm stops when the maximum
strategy implemented by approximating blocks afiumber of total atoms required for the image
the transformed image should aim at selecting gpproximation is reached.
the elements for approximating each of the blocks The difference between OMP and the hierar-
in the partition and ii) the hierarchized sequence iphized block wise (HBW) version discussed here
which the blocks should be approximated to readies in a) the sequence in which the blocks are
the global condition required by the algorithm. Thepartially approximated at each step and b) the
method introduced in the next section, which wetopping criterion. Standard OMP would be ap-
term hierarchized block wise OMP (HBW-OMP)plied independently to each block up to a given
implements the selection of i) and ii) simultaneerror, which is independent of the approximation
ously. of the other blocks. As condition (2) states, HBW-
OMP adds a hierarchized selection of the blocks to
1. HIERARCHIZED BLOCK WISE OMP be approximated in each iteration. Thus, at each
Given a redundant 2D dictionafy of M atoms, step, the maximum in (2) changes only for the
D = fD, 2 RN» NogM " each of theQ blocks selected block. This implies that, by storing the
Tq 2 RN Noin the partition of the transformed maximum for each block, the selection of blocks
image is approximated by an atomic decompositidntroduces the overhead of nding the maximum
Mkei(i;j ); i;j = 1;:::;Np of the form element of an array of siz®. As far as storage is
o concerned, HBW-OMP has to store all the stepwise
rkad(j;j) = cka9(n)Da(i;j); q=1;:::;Q: omlj(tputs of the algorithm, which includes matrices
n=1 ! Bn':n = 1;:::; kg, for each of theQ blocks in
For eachq, the atomsDq; n = 1;:::;kq are se- f[he partition._WhiIe the approxima_tion_is carried out
lected from the dictionar as follows: On setting " & block_W|§eQmanner, the relation introduced by
RO = T,;q = 1;:::;Q at each iteration the the cor)qun _, kg = K inhibits the complete .
algorithm selects the atoid -« that maximizes aPProximation of each block at once. Other pursuit

" . . .
the absolute value of the Frobenius inner produc%rategles can also be adapted to this selection

D, R%9ig:n=1:"Mqg=1::0,ie., process. In _particular,_ the HBW implemen_tation
" e . Qe of the Matching Pursuit (MP) method [12] differs

\Eq+1 =arg _V_U?thDn:qu;tij from that of OMP in that, for eachy and kg,
ra;i ’;}';';’;'\cg the coef cientscke9(n); n = 1;::05 kg in (2) are
with calculated simply ag*a9(n) = D-q; Rk Ljg.
2) It is appropriate to highlight also the diff
*a ppropriate to highlight also the difference
Rk = T aid(n)D g : between the proposed approach and the Block
- 'q e

OMP=MP (BOMP=BMP) approach introduced in

=1

n _ e} 1 = [13]. While BOMP=BMP selectsblocks of atoms
For eachq andk, the coef menti >*9(n); N = 4t each iteration step, our proposal keeps selecting
L::1ikq in (2) are such thakR 9k is mini- 0 a10ms as in OMBMP | i.e., one by one.

mum, wherek kg is the norm de ned through

the Frobenius inner product. This is ensured by

requesting thaR*=id = T, Pys Ty, wherePys IV. NUMERICAL TESTS
q q

is the orthogonal projection operator orit} = The dictionary used for the tests is a separable
sparﬁD«ggE‘Ll. The implementation discussed inmixed dictionary consisting of _two components,
[11] provides us with the representation I@&E Ty D1 andD;. The componenD; is a Redundant

as given by, Discrete Cosine (RDC) dictionary given by:

Xa Xa @ i 1. _...... :
Iﬂvgrq: D‘gl’Blr(]q;q;Tqi,: = quJQ(n)D‘ﬂ: D1 = fw; cos( M Y;j =1;::5;Ng;

=1 =1

" _ kq.qn with w;; i = 1;:::;M normalization factors. The
For xed g, the matricesBn™"; n = 1;:::;Kg  numberN is set equal to the number of pixels
are biorthogonal to the selected atolss; N = iy one of the block sides, anMl = 2N to
1;::17kq and span the identical subspad . have redundancy twd, is the standard Euclidean

These matrices can be effectively calculated ri)y 'Basis, also called the Dirac basis (DB), i.e.
cursive biorthogonalization and Gram Schmidt or-
thogonalization with one re-orthogonalization step. Do=fe(j)= ;i =21;::5Ngl;:



[T [ MP [ HBW [ OMP | HBW | WT [ DCT |

P 1391| 53.0 [ 439 | 629 | 40.7 | 271
B | 106 ] 120 | 12.7 | 144 9.6 10.7
C | 325 532 | 35.0 | 60.7 | 342 | 20.7
F | 486 | 156.6 | 50.5 | 181.5| 119.5| 40.0
S| 411] 879 | 433 | 99.2 | 70.0 | 335
A | 250] 301 | 284 | 35.0 | 249 | 194
TABLE Il
_— %2 SAME DESCRIPTION AS INTABLE 1 BUT IN THIS CASEMP,

. . . ' OMP AND THE CORRESPONDINGHBW VERSIONS ARE
Fig. 1. First row: Planet, Buttery and Chest X-Ray IMPLEMENTED IN THE WAVELET DOMAIN. THE RESULTS OF

images of size$12 512, 448 600, and592 728  1e WT AND DCT ARE REPEATED HERE TO FACILITATE THE
pixels, respectively. Second row: Flower, Spider Web and COMPARISON

Arti cial high resolution images from [18], all of size

1512 2264 pixels.

The required 2D dictionary is the tensor producichieve the required PSNR of 45.0dB using the
D D, whereD = D; [D . This small dic- above de ned RDCDB dictionary and the greedy

tionary, called RDCDB in [8], is chosen only for Strategies OMP, MP and their corresponding HBW

simplicity. Extending the RDCDB dictionary by Versions. The SRs arising when these techniques
adding wavelet atoms, for instance [14], or using'® |mp_lemented in the intensity domain are dis-
other dictionaries such as those arising by learnifj@yed in the rst four columns of Table 1. The
processes [15]-[17], would result in an incremerdPWs; from top to ground, correspond to the Planet
of sparsity with all the approaches. However thé), Buttery (B), Chest (C), Flower (F), Spider
purpose of these numerical tests is only to illustrat?€P (S) and Arti cial (A) images (1). For compar-
the advantage of implementing matching pursuff®n PUrposes, the results produce(_j by conve_nt|0nal
strategies on partitions, in the proposed HBW manf¥T and DCT approaches are displayed in the
ner. The set of six grey intensity levels imagel@St Wwo columns of the table. The WT results
used for illustrating the proposed HBW strategy arg'® obtained by applying the CDF97 WT, on the
shown in Fig 1. The images in the rst row: PlanetWhole image, and reducing coef cients by iterative
Butter y and Chest X-Ray are of sizésl2 512 thresholding until the PSNR of 45.0dB is reac_hed.
448 600and592 728pixels. The images in the The results from the orthogonal DCT are obtained,
second row: Flower, Spider Web and Arti cial are/"om @ partition of8 - 8 pixels, also by thresholding
high resolution images taken from [18]. The Spide?f COef cients.
Web and Arti cial are both only fractions of the From Table 1 it is clear that: a) Except for
much larger images in [18], which we have croppethe Buttery and Arti cial images, in the intensity
to the same size as the Flower, i.8512 2264 domain the results produced by a conventional
pixels. WT approach signi cantly over perform the other
All the images of Fig. 1 are approximated inr@pproaches. b) Whilst the block independent OMP
both, the intensity and wavelet domains by partend MP methods produce smaller SRs than their
tions of 8 8 pixels. The transformed image iscorresponding HBW versions, the difference is not
obtained using the CDF97 WT. The sparsity of aMery signi cant. However, as can be observed in

approximation is measured by the Sparsity Ratibable 2, all this is reversed if the greedy techniques
(SR) de ned as SR NxKNv , with Ny Ny the total are implemented with the RDCDB dictionary but
number of pixe|s andK the number of nonzero in the wavelet domain. In this domain: a) for all the

coef cients to approximate the whole image. Thémages the HBW versions of MP and OMP, with
the simple RDCDB dictionary, signi cantly over-

[T ] MP [ HBW [ OMP [ HBW | WT [ DCT | perform conventional WT and DCT approaches.
P[281] 29.0 ] 304 ] 310 | 407 [ 27.1 b) Except for the Buttery and Atrti cial images
(B: %g-g gg ;gg %421'471 ??462 ;8; the difference in the SR produced by the HBW
F 1210 228 | 426 [ 439 | 1195 400 approaches, with respect to the block independent
S [ 348 357 | 365 | 37.0 | 70.0 | 335 versions, is_massive
A1264] 275 | 297 | 307 | 249 | 194 Putting aside the Butter y and Arti cial images,

TABLE | the common feature of the other images in Fig. 1 is
SRRESULTING FROM APPROXIMATING(IN THE INTENSITY the Very S|gn| cant dlfference |n the SR produced
DOMAIN) THE SIX IMAGES OFFIG. 1,uP TOPSNR=45.0B, b ti | WT . ti ith t
BY THE METHODS: MP, OMP, THEIR CORRESPONDINGIBW y aconven Io_na appro_XIr_na IOI'-I, V\_” _respec
VERSIONS WT AND DCT. to the conventional DCT. This is an indication that
the representation of the images is particularity
sparse in the wavelet domain. It is clear from Table

approximation of all the images is carried out t@® that, the sparser the approximation by the WT, the



lower the performance of OMP with respect to thare highly compressible in the wavelet domain,

proposed HBW version.

approximations by partitions in such a domain may

Finally, some information with regard to processachieve much higher sparsity, provided that the
ing times is relevant. The tests presented here wegpeoposed HBW version of greedy pursuit strategies
run on a laptop with a 2.2 GHz Intel Processois applied.

and 3GB of RAM. The processing time (average of

10 independent runs in Matlab) for approximating\cknowledgements

the rst three images of Fig 1 in the wavelet \ye are sincerely grateful to the Referees for their
domain are: For the Planet 2.04 secs with OMBonstructive criticism which has been of much help
and 2.78 secs with HBW-OMP. For the Butter yiq present the proposal in the present form.

7.13 and 11.56 secs and for the Chest 4.3 and 5-1Support from EPSRC UK is acknowledged. The
secs, respectively. Using a C++ MEX  le for both\ATLAB and C++ MEX les for implementation
approaches the corresponding times are reducedfHBW-OMP with a separable dictionary (HBW-
to ten times. Thus, the larger images (second rogMp2D) are available on [19] (section Examples).

of Fig 1) were approximated using the MEX le.
The running times corresponding to those images
(left to right) are 5.71, 5.93 and 6.3 secs with OMP[y;
and 6.76, 9.7 and 21.9 secs with HBW-OMP.

In order to reduce processing time, the approxi-

. . . 2]

mation of a large image can be realized by dividing
the image into segments to be processed indepen-
dently. Since each of the segments will contain®!
different information, the sparsity of the segments
may differ from one another. For comparison with
the approximation of the whole image at once,
it is necessary to make uniform the sparsity of
all the segments. A possible way of achieving(5]
this is to randomize the position of the blocks
in the whole image, to ensure that each segmeA?]
contains blocks from different regions of the image.
The implementation is carried out as follows: i) [”]
Perform a random permutation of the small blocks
in the transformed domain. ii) Divide the resulting
image into segments. iii) Apply HBW-OMP to each [&!
segment. iv) Place the blocks back in the original
position. [9]

Through this simple procedure and taking 12
segment of540 560 pixels each, the time to [1q]
approximate the Arti cial image is reduced to 6.1
secs while the PSNR does not change signi cantly
(45.0dB). [11]

V. CONCLUSIONS [12]

An approach, for HBW implementation of
greedy methodologies operating on partitions, h&sl
been proposed. The proposal was motivated by
the convenience of approximating some imaggs]
in the wavelet domain. Certainly, if the image
is characterized by having large smooth regionﬁ,5
for instance, when approximated in the intensity
domain blocking artifacts are likely to be notice-
able, even at high PSNR. Additionally, if an imagqm]
is compressible in the wavelet domain, it can be
expected to have a sparser approximation in that
domain. This was illustrated through the OMP anlt”!
MP methodologies. The numerical examples weres]
chosen to enhance the fact that, for images whid!
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