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Abstract—An approach for effective implementa-
tion of greedy selection methodologies, to approxi-
mate an image partitioned into blocks, is proposed.
The method is specially designed for approximating
partitions on a transformed image. It evolves by
selecting, at each iteration step, i) the elements for
approximating each of the blocks partitioning the
image and ii) the hierarchized sequence in which the
blocks are approximated to reach the required global
condition on sparsity.

I. I NTRODUCTION

The representation of an image by a piece
of data, of lower dimensionality than the
pixel=intensity values, is called a sparse
representation of a compressible image.
Approximations using a redundant set, called
a dictionary, may attain high sparsity, thereby
bene�ting applications that range from denoising
to compression [1]–[9]. Those techniques for
approximation which evolve by selection of
dictionary elements, calledatoms, are refereed
to as greedy strategies. The motivation of this
Communication is to consider an effective
implementation of the Orthogonal Matching
Pursuit (OMP) strategy [10] to approximate an
image in the wavelet domain. For this to be
computationally effective, with respect to speed
and storage demands, the transformed image
should be partitioned into small blocks.

Approximations in the wavelet domain have been
shown useful for image compression [5]–[7]. In-
deed, as will be illustrated here, the approximation
of images which are compressible in the wavelet
domain results signi�cantly sparser if carried out
in such a domain. In addition, while some other
artifacts can be caused, approximations by blocking
in the wavelet domain avoid visually unpleasant
blocking artifacts in the intensity image.

The letter is organized as follows: Sec. II dis-
cusses the need for considering a dedicated version
of the OMP strategy to operate on a transformed
image. Sec. III proposes a particular version, which
is termed hierarchized block wise OMP. The ad-
vantage of the proposed approach is illustrated by
numerical tests in Sec. IV. The conclusions are
summarized in Sec. V.

II. T HE NEED FOR DEDICATED PURSUIT

STRATEGIES TO OPERATE ON PARTITIONS

Approximating an image partitioned into blocks
implies having to consider some `communication'
between the blocks. The need for communication
appears when trying to decide up to what error
each block is to be approximated. As the following
discussion suggests, an appropriate stopping crite-
rion for recursive approximation of blocks in the
wavelet domain needs to be aglobal measure.

Firstly let us introduce the notational convention:
R represents the sets of real numbers. Boldface
fonts are used to indicate Euclidean vectors or ma-
trices, whilst standard mathematical fonts indicate
the components, e.g.,c 2 RN is a vector of compo-
nentsc(i ); i = 1 ; : : : ; N andI 2 RN x � N y a matrix
of elementsI (i; j ); i = 1 ; : : : ; Nx ; j = 1 ; : : : ; Ny .
In particularI 2 RN x � N y will indicate an intensity
image ofNx � Ny pixels and~I 2 RN x � N y its cor-
responding wavelet transform. For square matrices
i.e., whenNx = Ny , to shorten notation the range
of indices is indicated asi; j = 1 ; : : : ; Nx :

Consider, without loss of generality, a real, or-
thogonal, and separable wavelet transform, which
transforms an intensity imageI 2 RN x � N y into the
transformed image~I 2 RN x � N y . Thus, each of the
points ~I (n; m); n = 1 ; : : : ; Nx ; m = 1 ; : : : ; Ny

is a Frobenius inner product~I (n; m) = h	 un 

	 vm ; I i F , where the operation
 indicates the
tensor product. The subscriptun in 	 un is used to
identify an ordered pair consisting of the scale and
translation parameters of the corresponding mother
wavelet	 . Accordingly, forn = 1 ; : : : ; Nx ; m =
1; : : : ; Ny ,

~I (n; m) =
N x ;N yX

i;j =1

	 un (i )I (i; j )	 vm (j ): (1)

We shall assume for simplicity a uniform partition
and consider that a transformed image,~I , is the
composition of Q identical and disjoint blocks
~I q; q = 1 ; : : : ; Q. Hence,~I = [ Q

q=1
~I q; where every

~I q is a 2D block of sizeNb � Nb.
It is clear from (1) that points of the trans-

formed image corresponding to a particular block
of size Nb � Nb contain some global information
about the intensity image. This suggests that a
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suitable stopping criterion for the approximation
of a partition in the wavelet domain needs to
be a global measure. Consequently, even if the
approximation of each block, as such, is carried
out independently of the others, a greedy selection
strategy implemented by approximating blocks of
the transformed image should aim at selecting i)
the elements for approximating each of the blocks
in the partition and ii) the hierarchized sequence in
which the blocks should be approximated to reach
the global condition required by the algorithm. The
method introduced in the next section, which we
term hierarchized block wise OMP (HBW-OMP)
implements the selection of i) and ii) simultane-
ously.

III. H IERARCHIZED BLOCK WISE OMP

Given a redundant 2D dictionaryD of M atoms,
D = f D n 2 RN b � N b gM

n =1 , each of theQ blocks
~I q 2 RN b � N b in the partition of the transformed
image is approximated by an atomic decomposition
~I kq ;q(i; j ); i; j = 1 ; : : : ; Nb of the form

~I kq ;q(i; j ) =
kqX

n =1

ckq ;q(n)D ` q
n
(i; j ); q = 1 ; : : : ; Q:

For eachq, the atomsD ` q
n
; n = 1 ; : : : ; kq are se-

lected from the dictionaryD as follows: On setting
R 0;q = ~I q; q = 1 ; : : : ; Q at each iteration the
algorithm selects the atomD ` q

k q +1
that maximizes

the absolute value of the Frobenius inner products
hD n ; R kq ;q i F ; n = 1 ; : : : ; M; q = 1 ; : : : ; Q, i.e.,

`q
kq +1 = arg max

n =1 ;:::;M
q=1 ;:::;Q

jhD n ; R kq ;q i F j

with

R kq ;q = ~I q �
kqX

n =1

ckq ;q(n)D ` q
n
:

(2)

For eachq and kq the coef�cientsckq ;q(n); n =
1; : : : ; kq in (2) are such thatkR kq ;qkF is mini-
mum, wherek � kF is the norm de�ned through
the Frobenius inner product. This is ensured by
requesting thatR kq ;q = ~I q � P̂Vq

k q

~I q, whereP̂Vq
k q

is the orthogonal projection operator ontoVq
kq

=

spanf D ` q
n
gkq

n =1 . The implementation discussed in
[11] provides us with the representation ofP̂Vq

k
~I q

as given by,

P̂Vq
k
~I q =

kqX

n =1

D ` q
n
hB kq ;q

n ; ~I qi F =
kqX

n =1

ckq ;q(n)D ` q
n
:

For �xed q, the matricesB kq ;q
n ; n = 1 ; : : : ; kq

are biorthogonal to the selected atomsD ` q
n
; n =

1; : : : ; kq and span the identical subspaceVq
kq

.
These matrices can be effectively calculated by re-
cursive biorthogonalization and Gram Schmidt or-
thogonalization with one re-orthogonalization step.

The coef�cients in (2) are obtained from the inner
productsckq ;q(n) = hB kq ;q

n ; ~I qi F ; n = 1 ; : : : ; kq:
For a given numberK , the algorithm iterates

until the condition
P Q

q=1 kq = K , is met. In other
words, the algorithm stops when the maximum
number of total atoms required for the image
approximation is reached.

The difference between OMP and the hierar-
chized block wise (HBW) version discussed here
lies in a) the sequence in which the blocks are
partially approximated at each step and b) the
stopping criterion. Standard OMP would be ap-
plied independently to each block up to a given
error, which is independent of the approximation
of the other blocks. As condition (2) states, HBW-
OMP adds a hierarchized selection of the blocks to
be approximated in each iteration. Thus, at each
step, the maximum in (2) changes only for the
selected block. This implies that, by storing the
maximum for each block, the selection of blocks
introduces the overhead of �nding the maximum
element of an array of sizeQ. As far as storage is
concerned, HBW-OMP has to store all the stepwise
outputs of the algorithm, which includes matrices
B kq ;q

n ; n = 1 ; : : : ; kq, for each of theQ blocks in
the partition. While the approximation is carried out
in a block wise manner, the relation introduced by
the condition

P Q
q=1 kq = K inhibits the complete

approximation of each block at once. Other pursuit
strategies can also be adapted to this selection
process. In particular, the HBW implementation
of the Matching Pursuit (MP) method [12] differs
from that of OMP in that, for eachq and kq,
the coef�cientsckq ;q(n); n = 1 ; : : : ; kq in (2) are
calculated simply asckq ;q(n) = hD ` q

n
; R kq � 1;q i F .

It is appropriate to highlight also the difference
between the proposed approach and the Block
OMP=MP (BOMP=BMP) approach introduced in
[13]. While BOMP=BMP selectsblocks of atoms
at each iteration step, our proposal keeps selecting
the atoms as in OMP=MP , i.e., one by one.

IV. N UMERICAL TESTS

The dictionary used for the tests is a separable
mixed dictionary consisting of two components,
D1 and D2. The componentD1 is a Redundant
Discrete Cosine (RDC) dictionary given by:

D1 = f wi cos(
� (2j � 1)(i � 1)

2M
); j = 1 ; : : : ; N g;

with wi ; i = 1 ; : : : ; M normalization factors. The
number N is set equal to the number of pixels
in one of the block sides, andM = 2 N to
have redundancy two.D2 is the standard Euclidean
basis, also called the Dirac basis (DB), i.e.

D2 = f ei (j ) = � i;j ; j = 1 ; : : : ; N gN
i =1 :
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Fig. 1. First row: Planet, Butter�y and Chest X-Ray
images of sizes512 � 512, 448 � 600; and 592 � 728
pixels, respectively. Second row: Flower, Spider Web and
Arti�cial high resolution images from [18], all of size
1512� 2264 pixels.

The required 2D dictionary is the tensor product
D 
 D , where D = D1 [ D 2. This small dic-
tionary, called RDCDB in [8], is chosen only for
simplicity. Extending the RDCDB dictionary by
adding wavelet atoms, for instance [14], or using
other dictionaries such as those arising by learning
processes [15]–[17], would result in an increment
of sparsity with all the approaches. However the
purpose of these numerical tests is only to illustrate
the advantage of implementing matching pursuit
strategies on partitions, in the proposed HBW man-
ner. The set of six grey intensity levels images
used for illustrating the proposed HBW strategy are
shown in Fig 1. The images in the �rst row: Planet,
Butter�y and Chest X-Ray are of sizes512� 512,
448� 600and592� 728pixels. The images in the
second row: Flower, Spider Web and Arti�cial are
high resolution images taken from [18]. The Spider
Web and Arti�cial are both only fractions of the
much larger images in [18], which we have cropped
to the same size as the Flower, i.e.,1512� 2264
pixels.

All the images of Fig. 1 are approximated in
both, the intensity and wavelet domains by parti-
tions of 8 � 8 pixels. The transformed image is
obtained using the CDF97 WT. The sparsity of an
approximation is measured by the Sparsity Ratio
(SR) de�ned as SR= N x N y

K , with Nx Ny the total
number of pixels andK the number of nonzero
coef�cients to approximate the whole image. The

I MP HBW OMP HBW WT DCT
P 28.1 29.0 30.4 31.0 40.7 27.1
B 10.6 11.2 12.3 12.7 9.6 10.7
C 22.6 23.2 23.6 24.4 34.2 20.7
F 41.0 42.8 42.6 43.9 119.5 40.0
S 34.8 35.7 36.5 37.0 70.0 33.5
A 26.4 27.5 29.7 30.7 24.9 19.4

TABLE I
SR RESULTING FROM APPROXIMATING(IN THE INTENSITY

DOMAIN ) THE SIX IMAGES OFFIG. 1, UP TO PSNR=45.0DB,
BY THE METHODS: MP, OMP,THEIR CORRESPONDINGHBW

VERSIONS, WT AND DCT.

approximation of all the images is carried out to

I MP HBW OMP HBW WT DCT
P 39.1 53.0 43.9 62.9 40.7 27.1
B 10.6 12.0 12.7 14.4 9.6 10.7
C 32.5 53.2 35.0 60.7 34.2 20.7
F 48.6 156.6 50.5 181.5 119.5 40.0
S 41.1 87.9 43.3 99.2 70.0 33.5
A 25.0 30.1 28.4 35.0 24.9 19.4

TABLE II
SAME DESCRIPTION AS INTABLE 1 BUT IN THIS CASE MP,

OMP AND THE CORRESPONDINGHBW VERSIONS ARE
IMPLEMENTED IN THE WAVELET DOMAIN . THE RESULTS OF

THE WT AND DCT ARE REPEATED HERE TO FACILITATE THE
COMPARISON.

achieve the required PSNR of 45.0dB using the
above de�ned RDCDB dictionary and the greedy
strategies OMP, MP and their corresponding HBW
versions. The SRs arising when these techniques
are implemented in the intensity domain are dis-
played in the �rst four columns of Table 1. The
rows, from top to ground, correspond to the Planet
(P), Butter�y (B), Chest (C), Flower (F), Spider
Web (S) and Arti�cial (A) images (I). For compar-
ison purposes, the results produced by conventional
WT and DCT approaches are displayed in the
last two columns of the table. The WT results
are obtained by applying the CDF97 WT, on the
whole image, and reducing coef�cients by iterative
thresholding until the PSNR of 45.0dB is reached.
The results from the orthogonal DCT are obtained,
from a partition of8� 8 pixels, also by thresholding
of coef�cients.

From Table 1 it is clear that: a) Except for
the Butter�y and Arti�cial images, in the intensity
domain the results produced by a conventional
WT approach signi�cantly over perform the other
approaches. b) Whilst the block independent OMP
and MP methods produce smaller SRs than their
corresponding HBW versions, the difference is not
very signi�cant. However, as can be observed in
Table 2, all this is reversed if the greedy techniques
are implemented with the RDCDB dictionary but
in the wavelet domain. In this domain: a) for all the
images the HBW versions of MP and OMP, with
the simple RDCDB dictionary, signi�cantly over-
perform conventional WT and DCT approaches.
b) Except for the Butter�y and Arti�cial images
the difference in the SR produced by the HBW
approaches, with respect to the block independent
versions, is massive.

Putting aside the Butter�y and Arti�cial images,
the common feature of the other images in Fig. 1 is
the very signi�cant difference in the SR produced
by a conventional WT approximation, with respect
to the conventional DCT. This is an indication that
the representation of the images is particularity
sparse in the wavelet domain. It is clear from Table
2 that, the sparser the approximation by the WT, the
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lower the performance of OMP with respect to the
proposed HBW version.

Finally, some information with regard to process-
ing times is relevant. The tests presented here were
run on a laptop with a 2.2 GHz Intel Processor
and 3GB of RAM. The processing time (average of
10 independent runs in Matlab) for approximating
the �rst three images of Fig 1 in the wavelet
domain are: For the Planet 2.04 secs with OMP
and 2.78 secs with HBW-OMP. For the Butter�y
7.13 and 11.56 secs and for the Chest 4.3 and 5.1
secs, respectively. Using a C++ MEX �le for both
approaches the corresponding times are reduced up
to ten times. Thus, the larger images (second row
of Fig 1) were approximated using the MEX �le.
The running times corresponding to those images
(left to right) are 5.71, 5.93 and 6.3 secs with OMP
and 6.76, 9.7 and 21.9 secs with HBW-OMP.

In order to reduce processing time, the approxi-
mation of a large image can be realized by dividing
the image into segments to be processed indepen-
dently. Since each of the segments will contain
different information, the sparsity of the segments
may differ from one another. For comparison with
the approximation of the whole image at once,
it is necessary to make uniform the sparsity of
all the segments. A possible way of achieving
this is to randomize the position of the blocks
in the whole image, to ensure that each segment
contains blocks from different regions of the image.
The implementation is carried out as follows: i)
Perform a random permutation of the small blocks
in the transformed domain. ii) Divide the resulting
image into segments. iii) Apply HBW-OMP to each
segment. iv) Place the blocks back in the original
position.

Through this simple procedure and taking 12
segment of540 � 560 pixels each, the time to
approximate the Arti�cial image is reduced to 6.1
secs while the PSNR does not change signi�cantly
(45.0dB).

V. CONCLUSIONS

An approach, for HBW implementation of
greedy methodologies operating on partitions, has
been proposed. The proposal was motivated by
the convenience of approximating some images
in the wavelet domain. Certainly, if the image
is characterized by having large smooth regions,
for instance, when approximated in the intensity
domain blocking artifacts are likely to be notice-
able, even at high PSNR. Additionally, if an image
is compressible in the wavelet domain, it can be
expected to have a sparser approximation in that
domain. This was illustrated through the OMP and
MP methodologies. The numerical examples were
chosen to enhance the fact that, for images which

are highly compressible in the wavelet domain,
approximations by partitions in such a domain may
achieve much higher sparsity, provided that the
proposed HBW version of greedy pursuit strategies
is applied.
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