
Simultaneous Optimized Orthogonal Matching Pursuit with
Application to ECG Compression

Laura Rebollo-Neira
Department of Applied Mathematics and Data Science

Aston University
B3 7ET, Birmingham, UK

Abstract

A greedy pursuit strategy which finds a common basis for approximating a set of similar
signals is proposed. The strategy extends the Optimized Orthogonal Matching Pursuit ap-
proach to selecting the subspace containing the approximation of all the signals in the set. The
method, called Simultaneous Optimized Orthogonal Matching Pursuit, is stepwise optimal in
the sense of minimizing at each iteration the mean error norm of the joint approximation. When
applied to compression of electrocardiograms, significant gains over other transformation based
compression techniques are demonstrated on the MIT-BIH Arrhythmia dataset.

Keywords: Simultaneous Optimized Orthogonal Matching Pursuit; Sparse Representation; ECG

compression.

1 Introduction

Important signals in everyday life such as natural images, audio, and electrocardiogram records, are in

general highly compressible. This implies that the original signal, available as a large set of numerical

values, can be transformed into a set of much smaller cardinality or a set containing a large proportion

of zero values. The transformation, which should not compromise the informational content of the

data, is frequently called sparse representation. Traditional methods for sparse representation of

signals are realized by applying an orthogonal transformation and disregarding the least relevant

points in the transformed domain. Subsequently the signal is recovered by means of the inverse

transformation. However, alternative transformations, which are not orthogonal but adapted to

a signal at hand, have been shown to render high level of sparsity. Such transformations aim at

representing a signal as a superposition of elements, which are called ‘atoms’ and are selected from a
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large set called ‘dictionary’. The superposition is said to be sparse if it involves a number of atoms

much smaller than the number of numerical values representing the original signal.

Given a dictionary, the problem of finding the sparsest approximation of a signal, up to some

acceptable error, is an NP-hard problem [1]. In practice it is addressed by tractable methodologies

known as Pursuit Strategies. Such methodologies can be grouped for the most part in two broad

categories. Namely, Basis Pursuit and Greedy Pursuit Strategies. The Basis Pursuit (BP) approach

endeavors to obtain a tractable sparse solution by minimization of the 1-norm [2]. Greedy algorithms

seek for a sparse solution by stepwise selection of dictionary’s atoms. When dealing with real data the

latter are in general more convenient. From the seminal Matching Pursuit (MP) [3] and Orthogonal

Matching Pursuit (OMP) [4] methods, a number of Greedy Pursuit Strategies have been developed

to improve the process of sparsely representing single signals [5–15]. Due to complexity issues and

memory requirements, most of these techniques are to be applied by segmenting the signal and

approximating each segment independently of the others. Nonetheless, when the segments bear

similarity with each other, for some applications it is convenient to look for the dictionary’s atoms

suitable to represent all the segments simultaneously. The greedy Pursuit Strategy which has been

dedicated to simultaneously approximate a set of signal is based on OMP [4] and has been termed

Simultaneous Orthogonal Matching Pursuit (SOMP) [16]. Since in this work we extend the Optimized

Orthogonal Matching Pursuit method [6] to simultaneously approximate a set of signals, we term

the new approach Simultaneous Optimized Orthogonal Matching Pursuit (SOOMP).

The difference between SOMP and the SOOMP approach introduced in this work is equivalent

to the difference between OMP and OOMP methods, both for approximating single signals. OOMP

is stepwise optimal in the sense of minimizing at each iteration the norm of the residual error.

Whilst OMP minimizes the norm of the error only with respect to the coefficients of the atomic

superposition, OOMP minimizes the norm of the error with respect to those coefficients and the

selection of a new atom. In the case of multiple signals SOOMP is designed to minimize the mean
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value error norm. An additional advantage arises from the proposed implementation. Based on

adaptive biorthogonalization, the SOOMP method produces at each iteration the common dual

basis to the basis of selected atoms. This allows to calculate the coefficients of the representation

of each signal in the set simply by computation of inner products. The practical relevance of the

approach is illustrated by using it for compression of electrocardiogram (ECG) records.

An ECG signal represents a sequence of heartbeats which, if properly segmented and aligned,

are suitable to be simultaneously approximated. This property is shown to benefit compression.

Reliable comparison with other compression techniques is made possible by recuse to an adaptive

quantization procedure that facilitates to reconstruct the whole ECG record at the required qual-

ity. The compression results are shown to significantly improve upon results produced by different

transformation based approaches.

The paper is organized as follows: Sec. 2 introduces the problem and the mathematical notation.

Sec. 3 establishes the proposed SOOMP approach for simultaneous approximation of a set of sim-

ilar signals. Sec. 4 applies the method for compressing digital ECG records and produces reliable

comparisons with previously reported results. The conclusions are presented in Sec. 5.

2 Mathematical introduction of the problem

In order to pose in mathematical terms the problem to be addressed we need to introduce the notation

used throughout the paper as well as some preliminary background.

The sets of real, integer, and natural numbers are indicated by R,Z, and N, respectively. Boldface

letters are used to indicate Euclidean vectors or matrices whilst standard mathematical fonts indicate

components, e.g., f ∈ RN , N ∈ N is a vector of components f(i), i = 1, . . . , N and C ∈ RQ×k is

a matrix of elements C(i, j), i = 1, . . . , Q, j = 1, . . . , k which when not leaving room for ambiguity

will also be represented as C(:, j), j = 1, . . . , k A set of Q signals of equal length, say L, to be

simultaneously approximated in a common subspace, is represented as a set of vectors {f{q} ∈
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RL, q = 1, . . . , Q}. The inner product is indicated as ⟨·, ·⟩, e.g for f{1} ∈ RL and f{2} ∈ RL

⟨f{1}, f{2}⟩ =
L∑
i=1

f{1}(i)f{2}(i).

The 2-norm induced by the inner product is denoted as ∥ · ∥2, e.g. for f{q} ∈ RL

∥f{q}∥2 =
√
⟨f{q}, f{q}⟩ =

√√√√ L∑
i=1

(f{q}(i))2.

A set of M vectors

D =
{
dn ∈ RL ; ∥dn∥2 = 1

}M

n=1
,

such that span (D) = Vk and dim(Vk) ≤ M , is called a dictionary for Vk and its elements are called

atoms.

In our context a signal f is considered to be an element of some inner product space V . Each given

signal is assumed to be well approximated by an element, say fk, belonging to a finite dimensional

subspace Vk ⊂ V . This assumption implies that, within a tolerance ρ much larger than the numerical

errors in the calculations, fk ∈ Vk is accepted to be a good approximation of f ∈ V if ∥f − fk∥22 < ρ.

Examples of signals fulfilling this definition are, amongst others, images, audio signals, and electro-

cardiograms. These are all signals with acceptable approximations which, without affecting their

informational content, do not necessarily produce a highly accurate point-wise reproduction of the

signals. These type of signals are suitable for lossy compression.

Since this work concerns approximation of similar signals we need to make an assumption on the

signals that will be considered. We say that a finite set of Q signals {f{q} ∈ V }Qq=1 are similar if

they can be well approximated in a subspace Vk of dimension k, with k significantly smaller than

the dimention of V . This is equivalent to assuming that there exists a common basis {αn}kn=1 for Vk

such that each signal f{q} is approximated as

f̃{q} =
K∑

n=1

cqnαn, q = 1, . . . , Q.
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The quality of the approximated set will be assessed in mean value

E =

Q∑
q=1

p(q)∥f{q} − f̃{q}∥22,

where p(q) ≥ 0 with
∑Q

q=1 p(q) = 1.

3 Strategy for simultaneous approximation of a set of sig-

nals

Given a set of similar signals {f{q} ∈ RL}Qq=1 and a dictionary, the aim is to simultaneously approx-

imate all the signals in the set {f{q} ∈ RL}Qq=1 within a common subspace Vk = span
(
{dℓn}kn=1

)
. In

other words, each signal f{q} ∈ RL is to be approximated as a k-term atomic superposition

f{q}k =
k∑

n=1

c{q}(n)dℓn , q = 1, . . . , Q, (1)

where the atoms dℓn , n = 1, . . . , k in (1) are selected from the given dictionary according to the

criterion of optimality that will be established by Proposition 1 in the next subsection. Let us

suppose for the moment that these atoms are known. Assigning a weight p(q) ≥ 0 to the signal

f{q}, with
∑Q

q=1 p(q) = 1, the coefficients c{q} ∈ Rk in (1) are required to minimize the mean of the

square norm of the errors in the approximation of the set of signals, i.e.

c{q}, . . . , c{Q} = argmin
c′{q},...,c′{Q}

Q∑
q=1

p(q)∥f{q} −
k∑

n=1

c′{q}(n)dℓn∥22. (2)

Since p(q) ≥ 0 the above minimization is equivalent to finding the components c{q}(n), n = 1, . . . , k

of each vector c{q} such that

c{q}(1), . . . , c{q}(n) = argmin
c′{q}(1),...,c′{q}(n)

∥f{q} −
k∑

n=1

c′{q}(n)dℓn∥22 q = 1 . . . , Q. (3)

Accordingly, the minimization with respect to the coefficients in (1) can be implemented by adaptive

biorthogonalization [17], as proposed within the OOMP algorithm for a single signal [6],

c{q}(n) =
〈
βk

n, f{q}
〉
, q = 1, . . . , Q, (4)
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with vectors βk
n calculated as will be described in the next section.

The selection of the atoms dℓn , n = 1 . . . , k in the decomposition (1) such that

Q∑
q=1

p(q)∥f{q} −
k∑

n=1

c{q}(n)dℓn∥22 is minimized

poses an intractable problem (for a dictionary of M atoms there are M !
(M−k)!k!

possibilities to be

checked). We address the selection in a tractable manner by extending the OOMP strategy to

simultaneously approximate a set of similar signals. The extended strategy is refereed to as SOOMP

(Simultaneous OOMP).

3.1 SOOMP algorithm

The algorithm is initialized by setting: r{q}0 = f{q}, f{q}0 = 0, Γ = ∅ and k = 0. The first atom is

selected as the one corresponding to the index ℓ1 such that

ℓ1 = argmax
n=1,...,M

Q∑
q=1

p(q)
∣∣〈dn, r{q}0

〉∣∣2 . (5)

This first atom is used to assign w1 = β1 = dℓ1 , calculate r{q}1 = f{q} − dℓ1 ⟨dℓ1 , f{q}⟩ and iterate

as prescribed below.

1) Upgrade the set Γ← Γ ∪ ℓk+1, increase k ← k + 1, and select the index of a new atom for the

approximation as

ℓk+1 = argmax
n=1,...,M

n/∈Γ

Q∑
q=1

p(q)

∣∣∣〈dn, r{q}k
〉∣∣∣2

1−
∑k

i=1 | ⟨dn, w̃i⟩ |2
, with w̃i =

wi

∥wi∥
. (6)

2) Compute the corresponding new vector wk+1 as

wk+1 = dℓk+1
−

k∑
i=1

wi

∥wi∥2
〈
wi,dℓk+1

〉
, (7)

including for numerical accuracy the re-orthogonalization step:

wk+1 ← wk+1 −
k∑

i=1

wi

∥wi∥2
⟨wi,wk+1⟩ . (8)

6



3) Upgrade vectors βk
n as

βk+1
k+1 =

wk+1

∥wk+1∥2
, βk+1

n = βk
n − βk+1

k+1

〈
dℓk+1

,βk
n

〉
, n = 1, . . . , k. (9)

4) Update r{q}k as

r{q}k+1 = r{q}k − ⟨wk+1, f{q}⟩
wk+1

∥wk+1∥2
. (10)

5) If for a given value ρ the condition
∑Q

q=1 p(q)∥r{q}
k+1∥22 < ρ has been met stop the selection

process. Otherwise repeat steps 1) - 5).

Once the iterations have finished calculate the coefficients for the decomposition (1) as

c{q}n =
〈
βk

n, f{q}
〉
, n = 1, . . . , k, q = 1, . . . , Q.

For q = 1, . . . , Q calculate the final approximation of each signal f{q} as

f{q}k = f{q} − r{q}k.

Remark 1. The set of vectors βk
n, n = 1, . . . , k, q = 1, . . . , Q as given in (9) fulfills that

f{q}k =
k∑

n=1

〈
βk
n, f{q}

〉
dℓn = P̂Vk

f{q}, q = 1, . . . , Q,

where P̂Vk
f{q} is the orthogonal projector of f{q} onto Vk = span{dℓn}kn=1. Please find the proof

in [6], or as a particular case of the more general proof in [17].

Proposition 1. The recursive selection of the indices ℓ1, . . . , ℓk, as proposed in (6), is stepwise

optimal. It minimizes, at each iteration, the mean of the square distance between the set of signals

f{q}, q = 1, . . . , Q and their corresponding approximations f{q}k, q = 1, . . . , Q.

Proof. For k = 0 it is clear that ℓ1 selected as in (5) minimizes the mean of the square distance E1

as given by

E1 =
Q∑

q=1

p(q)∥f{q} − f{q}1∥22 =
Q∑

q=1

p(q)(∥f{q}∥22 − | ⟨dℓ1 , f{q}⟩ |2).
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Let us assume that the indices ℓ1, . . . , ℓk selected as proposed in (6) minimize, in the specified stepwise

sense, the mean square distance

Ek =
Q∑

q=1

p(q)∥f{q} − f{q}k∥22.

We shall prove by induction that if the atoms dℓ1 , . . . ,dℓk are fixed, at iteration k+1 the atom dℓk+1

selected as in (6) minimizes Ek+1. The proof stems from the fact that at iteration k the approximation

f{q}k of each signal f{q} is the orthogonal projection of f{q} onto the subspace Vk = span{dℓn}kn=1

(c.f. Remark 1).

Consider that Vk is augmented by one element, say dℓk+1
/∈ Vk, so that Vk+1 = Vk ⊕ dℓk+1

, where

⊕ indicates direct sum. The orthogonal projection of each signal f{q}, q = 1, . . . , Q onto Vk+1 can

be expressed as

f{q}k+1 = P̂Vk+1
f{q} = P̂Vk

f{q}+ wk+1

∥wk+1∥22
⟨wk+1, f{q}⟩ with wk+1 = dℓk+1

− P̂Vk
dℓk+1

.

Thus

∥f{q} − f{q}k+1∥22 = ∥f{q} − P̂Vk+1
f{q}∥22

= ∥f{q} − P̂Vk
f{q} − wk+1

∥wk+1∥22
⟨wk+1, f{q}⟩ ∥22

= ∥f{q} − P̂Vk
f{q}∥22 −

| ⟨wk+1, f{q}⟩ |22
∥wk+1∥22

.

Since ∥f{q} − P̂Vk
f{q}∥22 is optimized and fixed at iteration k, it is true that at iteration k + 1 the

index of the atom which minimizes Ek+1 fulfils

ℓk+1 = argmax
n=1,...,M

n/∈Γ

Q∑
q=1

p(q)
| ⟨wk+1, f{q}⟩ |22
∥wk+1∥22

= argmax
n=1,...,M

n/∈Γ

Q∑
q=1

p(q)

∣∣∣〈dℓn − P̂Vk
dℓn , f{q}

〉∣∣∣2
∥dℓn − P̂Vk

dℓn∥22
. (11)

8



The proof is concluded using the self-adjoint properties of P̂Vk
to write:∣∣∣〈dℓn − P̂Vk

dℓn , f{q}
〉∣∣∣ =

∣∣∣⟨dℓn , f{q}⟩ −
〈
P̂Vk

dℓn , f{q}
〉∣∣∣

=
∣∣∣〈dℓn , f{q} − P̂Vk

f{q}
〉∣∣∣

=
∣∣∣〈dℓn , r{q}

k
〉∣∣∣ .

Moreover, since all atoms are normalized and the set {w̃i}ki=1 is an orthonormal basis for Vk we have

P̂Vk
dℓn =

k∑
i=1

w̃i ⟨w̃i,dℓn⟩ ,

so that

∥dℓn − P̂Vk
dℓn∥22 = 1− ∥P̂Vk

dℓn∥22 = 1−
k∑

i=1

| ⟨w̃i,dℓn⟩ |2,

which shows the equivalence between (11) and (6).

4 Application to compression of ECG records

A digital ECG signal represents a sequence of heartbeats. In a typical record each heartbeat is

characterized by a combination of three graphical deflections, known as QRS complex, and two

lateral and less visually noticeable P and T waves. A short segment of a typical ECG record is

illustrated in Fig.1.
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Figure 1: A short segment of an ECG record

In order to simultaneously approximate all the beats in a record we need to segment and align the

beats to meet the requirement of being similar. The procedure is discussed in the next subsection.
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4.1 Segmentation and alignment of heartbeats

The QRS complex is segmented once the central R peak is detected. This can be effectively done

by the Pan Tompkins method [18]. In our numerical examples we use the off-the-shelf MATLAB

implementation of this algorithm [19]. Since the distance between peaks in a record is not uniform,

the length of the segmented beats should be passed to the decoder. The segmented peaks are placed

in arrays f{q}, q = 1, . . . , Q of equal length L by padding with zeros. Fig.4 illustrates the resulting

configuration with 80 heartbeats.

Figure 2: Configuration resulting by segmentation and alignment of 80 heartbeats for illustration
purposes.

The segmented and aligned heartbeats are simultaneously approximated using the SOOMP ap-

proach by assigning the same weight to each heartbeat, i.e. setting p(q) = 1
Q
, q = 1, . . . , Q. The

adopted dictionary is the Cohen-Daubechies-Feauveau CDF97 dictionary, of redundancy approx-

imately two, introduced in [20, 21]. Given a partition xi, i = 1, . . . , N of the interval [c, d] the

dictionary is constructed as follows [20,21].

D = V0 ∪W0 ∪W1 ∪W2 ∪W3 ∪W4, (12)

with

V0 = {ϕ(xi −
k

2
)|[c,d], k ∈ Z, i = 1, . . . , N}, (13)
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and

Wj = {2j/2ψ(2jxi −
k

2
)|[c,d], k ∈ Z, i = 1, . . . , N}, (14)

where ψ(2jxi − k
2
)|[c,d] indicates the restriction of the function ψ(2jxi − k

2
) to the interval [c, d]. The

prototype functions ϕ(x) and ψ(x) are plotted in the left and right graphs of Fig.3 respectively.

The MATLAB codes for producing numerically both functions and building the dictionary (12) are

described in [21]. The codes have been made available in [23] together with of the complete MATLAB

software for reproducing the numerical examples in this work.
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Figure 3: Cohen-Daubechies-Feauveau scaling and wavelet functions [22].

The left graph of Fig. 4 is the two dimensional image of the segmented and aligned heartbeats

corresponding to the record 100 in the MIT-BIH Arrhythmia database [24].

The coefficients in the decompositions (1) are placed in a two dimensional array C ∈ RQ×k.
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Figure 4: The graph on the left is the image of the magnitude of the aligned heartbeats in record
100. The graph on the right is the image of the magnitude of the coefficients in the simultaneous
approximation of the heartbeats.

11



The right graph in Fig.4 shows the magnitude of theC entries corresponding to the approximation

of the heartbeats represented in the left graph of the same figure. We notice that the size of the array

in the left graph (2273×426) is reduced to a smaller array of size 2273×19 containing the coefficients

in (1) with respect to the common basis dℓ1 , . . .dℓk . As it is clear from the location of the brightest

pixels in the right image of Fig.4 the coefficients of largest magnitude are all concentrated in the

first vertical lines. This implies that to favor compression it is convenient to apply an orthogonal

transformation to map the coefficients in the vertical direction to smaller values, which eventually

will be quantized to zero. Thus, by applying the discrete cosine transform on each columns of C, we

create the transformed array B ∈ RQ×k with the following entries

B(:, n) = d̂ctC(:, n), n = 1, . . . , k, (15)

where d̂ctC(:, n) indicates the one dimensional discrete cosine transform operating on the n-th column

of array C. The magnitude of the transformed points is shown Fig. 5.
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Figure 5: Magnitude of the array B (c.f. (15)).

4.2 Encoding

At the encoding step the Q × k array B is expressed as a vector b = (b(1), . . . , b(K)) of K = Q · k

components, adopting the column-major order. The encoding of this vector follows the procedure

outline in [25]. The components of b are converted to integer numbers by a mid-tread uniform
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quantizer as follows:

b∆(i) =

⌊
b(i)

∆
+

1

2

⌋
, i = 1, . . . , K, (16)

where ⌊x⌋ indicates the largest integer smaller or equal to x and ∆ is the quantization parameter. For

comparison with results in other publications in the numerical examples the quantization parameter

∆ is set to produce the required quality of the reconstructed signal.

The absolute value of the elements (16) are placed in a smaller vector, say b′ = (b′(1), . . . , b′(K ′)),

after the elimination of zeros. The signs are encoded separately in a vector s = (s(1), . . . , s(K ′))

using a binary alphabet: 1 for + and 0 for −.

Assuming that the nonzero values in (16) occur at the positions ȷi, . . . , ȷK′ , these indices are

re-ordered in ascending order ȷi → ȷ̃i, i = 1, . . . , K ′, i.e. ȷ̃i < ȷ̃i+1, i = 1, . . . , K ′. This induces new

order in the coefficients, b′ → b̃′ and in the corresponding signs s→ s̃. Defining δ(i) = ȷ̃i− ȷ̃i−1, i =

2, . . . , K ′ the array δ = (ȷ̃1, δ(2), . . . , δ(K
′)) stores the indices ȷ̃1, . . . , ȷ̃K′ with unique recovery.

Finally the vectors b̃′, s̃, δ, as well as the length of the heartbeats h, are compressed using adap-

tive Huffman coding implemented by the off-the-shelf MATLAB function Huff06 [26]. The additional

numbers which have to be passed to the decoder are:

(i) The indices ℓi, i = 1, . . . , k of the selected dictionary’s atoms forming the common basis.

(ii) The quantization parameter ∆.

(iii) The mean value of the 1D ECG record (if not previouly substracted).

(iv) The number of rows and columns of C, i.e. Q and k.

4.3 1D ECG signal recovery

At the decoding stage, after reverting Huffman coding, the locations ȷ̃1, . . . , ȷ̃K of the nonzero entries

in the transformed array after quantization are readily obtained. This allows the recovery of the

array Br as follows.
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(i) Set br(i) = 0, i = 1, . . . , K and br(ȷ̃i) = (2s̃(i)− 1)b̃′(i)∆, i = 1, . . . , K.

(ii) Reshape the vector br to produce a 2D array Br of size Q× k. The array Cr is recovered from

the Br one by inverting the d̂ct transformation (c.f. (15)).

(iii) Each row of the recovered array Cr gives the coefficients in the decomposition (1) of the

approximated heartbeats, i.e. f r{q} =
∑k

i=1C
r(q, i)dℓi , q = 1, . . . , Q.

(iv) Finally the reconstructed beats f r{q} are assembled in a 1D record using the distance between

heartbeats that was stored in the vector h.

The achieved compression ratio CR, which is defined as

CR =
Size of the uncompressed file

Size of the compressed file
, (17)

depends on the required quality of the recovered signal. In the numerical examples the quality of

the recovered records is assessed by the PRDN metric defined as follows

PRDN =
∥f − f r∥
∥f − f∥

× 100% (18)

where f is the whole ECG record, f r is the reconstructed record from the compressed file and f is

the mean of f . It is pertinent to stress the importance of adopting the normalized metric (18) for

comparison of reconstruction quality. The subtraction of f avoids dependence on the signal baseline.

5 Numerical Tests

For the numerical test we use the MIT-BIH Arrhythmia database [24]. Each of the records is of 30

min length, consisting of N = 650000 11-bit samples at a frequency of 360 Hz.

For comparison purposes we compress the subset of records reported in [27], [28], and [29] and

reproduce the values of PRDN in those publications. This is achieved as follows: The SOOMP

method is applied to approximate the set of heartbeats in each record up to 80% the target PRDN.
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The quantization parameter ∆ is automatically fixed, by a bisection algorithm, in order to reproduce

the target PRDN for the whole record within two decimal places.

The first, second and third columns of Table 1 reproduce the results published in [27]. The

comparison is relevant because the approach [27] is also based on approximation of heartbeats using

a dictionary. The techniques are very different though. Whilst our dictionary does not have to be

stored because it is numerically generated, the dictionary in [27] is part of the ECG record to be

compressed. Moreover, the method for finding the sparse representation is different and so is the

procedure to store the parameters that should be passed to the decoder.

Our compression results are shown in the forth column of Table 1. These results demonstrate

a significant gain in CR for the same recovery quality. For further comparison we apply the fast

compression algorithm [25], which does not require peak segmentation or Huffman coding. This

method has been already shown to improve the average CR for the 48 records in the MIT-BIH

Arrhythmia dataset with respect to the results in [30], [31], and [32], for a broad rage of average

qualities. For comparison with [27] in Table 1 the compression is realized to reproduce the PRDN

listed in the second column for each record.
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Table 1: Comparison with the results in [27]. The first collumn lists the records considered in [27].
The second column displays the values of PRDN and the third collum their CRs. Our CRs for the
same PRDN are shown in the forth column. The fifth column shows the CRs obtained with the fast
approach [25].

Record PRDN CR [27] CR prop. CR [25]

100 18.03 78.20 143.99 36.51
100 17.22 75.12 139.47 35.25

101 14.66 80.24 102.58 31.26
101 12.91 76.46 82.31 30.31

102 18.54 58.54 58.49 33.89
102 18.16 48.47 58.13 33.48

103 12.57 46.32 90.91 30.84
103 11.57 44.33 86.27 29.61

109 13.70 24.86 145.80 51.23
109 9.97 23.53 97.73 36.91

111 26.20 31.05 121.09 38.29
111 19.51 29.44 60.49 32.20

112 16.58 34.06 91.48 35.05
112 15.99 35.49 85.59 34.32

113 14.08 37.42 90.76 32.49
113 9.82 32.55 55.30 27.68

115 9.76 38.26 62.31 24.52
115 9.18 36.57 57.32 23.74

117 14.42 38.94 120.89 36.94
117 13.38 37.13 105.97 35.74

119 32.19 16.26 153.33 90.40
119 16.36 15.24 78.81 48.08

121 17.36 26.67 111.74 46.45
121 15.63 25.29 100.72 41.11

Average 17.33 41.9 107.78 40.65
Average 14.14 39.97 84.00 34.04
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Table 2: Same description as in Table 1 but the comparison is with the results of Table I in [28].

Record PRDN CR [28] CR prop. CR [25]

100 11.46 39.81 64.47 23.03
101 14.13 42.04 95.53 30.91
102 19.94 41.09 63.69 35.09
103 6.72 41.24 39.17 21.05
107 13.27 41.84 71.40 38.15
109 7.31 38.25 59.34 28.46
111 13.94 41.73 41.59 25.14
115 8.04 42.71 47.79 22.04
117 10.00 46.75 51.56 26.17
118 15.33 39.60 66.44 28.26
119 9.67 41.97 43.98 30.71
213 13.63 32.58 62.24 25.72
222 22.44 40.69 31.95 24.77
232 20.76 42.28 59.66 35.52

Average 13.33 40.90 57.09 28.22

The first, second and third columns of Table 2 reproduce the results published in [28], which are

achieved with an approach based on the Singular Value Decomposition (SVD).

Our compression ratios (CRs) are shown in the the forth column of Table 2. The fifth column

shows the CRs produced by the fast compression algorithm [25].

Table 3: Same description as in Table 1 but the comparison is with the results of Table I in [29].

Record PRDN CR [29] CR prop. CR [25]

100 11.55 50.70 65.47 23.14
101 11.29 58.54 64.13 27.86
103 9.16 54.16 61.37 25.70
107 14.53 53.12 78.31 40.34
109 11.83 46.43 120.08 44.67
111 16.40 53.39 50.11 28.34
115 8.94 56.77 58.76 23.49
117 12.43 66.15 90.39 34.62
119 10.28 56.03 46.99 32.17
214 17.03 50.84 87.66 54.04
223 17.49 45.38 86.06 40.80

Avegave 12.81 53.77 73.57 34.11

The first, second and third columns of Table 3 reproduce the results published in [29], which
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are also obtained with a Singular Value Decomposition based approach. Our CRs are shown in

the forth column of this table. The fifth column shows the CRs produced by the fast compression

algorithm [25].

Note: The MATLAB software for reproducing the tables is available on

http://www.nonlinear-approx.info/examples/node017.html

6 Conclusions

The Optimized Orthogonal Matching Pursuit approach has been extended with the purpose of se-

lecting a common basis for the simultaneous approximation of a set of similar signals. The extended

approach, termed Simultaneous Optimized Orthogonal Matching Pursuit, minimizes at each iteration

the mean error norm of the joint approximation. The applicability of the method was illustrated by

the simultaneous approximation of heartbeats in ECG records taken from the MIT-BIH Arrhythmia

database. The particular records were selected for comparison purposes as in [27], [28], and [29]. It

was demonstrated that simultaneous approximations of heartbeats can be used for compressing a

whole record. The adopted compression strategy was shown to improve upon compression results

achieved by other methods for the same reconstruction quality. The comparison was made possible

by means of an iterative quantization procedure which delivers the required quality. We feel confi-

dent that the proposed technique could be of assistance to other signal processing applications which

benefit from the use of a common basis for the approximation of a set of similar signals.
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