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Constructive updating/downdating of oblique projectors:
a generalization of the Gram-Schmidt process
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Abstract

A generalization of the Gram-Schmidt procedure is achieved by providing equations

for updating and downdating oblique projectors. The work is motivated by the problem

of adaptive signal representation outside the orthogonal basis setting. The proposed

techniques are shown to be relevant to the problem of discriminating signals produced by

different phenomena when the order of the signal model needs to be adjusted.

1 Introduction

An operator O is a projector if it is idempotent, i.e., if it is endowed with property O2 = O.
The projection is along (or parallel to) its null space N (O) and onto its range R(O). This
entails that Ov = v for v ∈ R(O) and Ov = 0 for v ∈ N (O). If the subspaces R(O) and N (O)
are orthogonal the operator is called an orthogonal projector, which is the case if and only if
O is self-adjoint. Otherwise it is called oblique projector.

Oblique projectors, though introduced early [1,2], have received less attention than orthog-
onal projectors. Nevertheless, quite recently there has been a renewed interest in relation to
their properties and applications [3–12]. In particular, oblique projectors have been shown to
be of significant relevance to signal processing techniques [13–16]. The present effort is very
much motivated by problems arising in the area of signal representation outside the traditional
orthogonal basis setting [17–20]. In such a context a signal f , represented mathematically as
an element of a vector space, is approximated as a linear expansion of the form

fk =

k∑
i=1

civi. (1)

The vectors vi in (1) are sometimes sequentially fed or chosen according to some optimality
criterion. In such situations one needs to be in a position to effectively adapt the coefficients
of the linear superposition so as to account for the possibility of changes in the model. This
may entail a)increasing the order k of the model by incorporating new terms in the expansion
b)reducing the order by eliminating some terms in the expansion c)replacing some of the vectors
in (1) by different ones.

Assuming that the signal space is an inner product space, for fk given in (1) to be the
best approximation of a signal f in a minimum distance sense, the coefficients in (1) should
be calculated in such a way that fk is the orthogonal projection of f onto span{vi}k

i=1. This
is the main reason for the popularity of orthogonal projectors in the context of approximation
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techniques. Nevertheless, suppose that the observed signal is produced by the interference of
two phenomena so that the model (1) becomes

k∑
i=1

civi +
n∑

i=1

diwi. (2)

If one were interested in discriminating the phenomena by splitting the signal, the component
in span{vi}k

i=1 could be obtained by an oblique projection operation mapping the other com-
ponent to zero. There is a broad range of applications in which this procedure happens to
be of assistance [13]. Thus, we felt motivated to find recursive equations for adapting oblique
projectors. Some of the equations to be proposed here are inspired by our previous work on re-
cursive biorthogonalization for orthogonal projectors representation [21, 22]. We have recently
been made aware that such a work is closely related to earlier one on recursive generalized
inverses [23–26].

In spite of the fact that for most numerical implementations a projector is represented by
a matrix, we prefer to think of projectors as operators acting by performing inner products.
An important reason for this choice is the following: The equations can thereby be applied in
general inner product spaces and comprise two very important cases in particular. Namely, the
Euclidean inner product space, where a projector is indeed a matrix, and the space of functions
of finite 2-norm. We like to see the proposed recursive equations as generalized Gram-Schmidt
like procedures for generating sequences in inner product spaces. Such sequences give rise to
oblique projectors onto nested subspaces and, of course, to orthogonal projectors as special
case.

The paper is organized as follows: Section 2 introduces the notation along with a discussion
on the general construction of oblique projectors. Section 3 provides the recursive equations
for stepwise updating/downdating of such projectors. Applications are illustrated in Section 4
by i)recovering a simulated X-ray diffraction peak from a background and ii)filtering impulsive
noise from the register of the motion of a system consisting of the superposition of damped
harmonic oscillators. The conclusions are drawn in Section 5.

2 Oblique projectors

As already mentioned we will work in a general inner product space H, where the square norm
||.||2 is induced by the inner product that we represent as 〈·, ·〉. Given two closed subspaces,
V ∈ H and W⊥ ∈ H, such that H = V+W⊥ and V ∩W⊥ = {0}, the oblique projector operator
onto V along W⊥ will be represented as ÊVW⊥. Then ÊVW⊥ satisfies:

Ê2
VW⊥ = ÊVW⊥

ÊVW⊥v = v, for any v ∈ V

ÊVW⊥w = 0, for any w ∈ W⊥.

In the particular situation in which W⊥ happens to be the orthogonal complement of V in H,
i.e. if W⊥ = V⊥, the operator is self-adjoint and represents an orthogonal projection onto V.
We emphasize this special case by using the particular notation ÊVV⊥ = P̂V . In the sequel the
orthogonal projector operator onto a subspace, say the subspace X , will be indicated as P̂X .

Let us assume that in general V = span{vi}k
i=1 andW = span{ui}k

i=1, withW the orthogonal
complement of W⊥. Denoting as ei, i = 1, . . . , k the standard orthonormal basis in Ck, i.e.,
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the inner product 〈ei, ej〉 = δi,j with δi,j equal one if i = j and zero otherwise, we define the

operators V̂ and Ŵ as

V̂ =
k∑

i=1

vi〈ei, ·〉, Ŵ =
k∑

i=1

ui〈ei, ·〉.

Thus the corresponding adjoint operators Ŵ ∗ and V̂ ∗ are

V̂ ∗ =
k∑

i=1

ei〈vi, ·〉, Ŵ ∗ =
k∑

i=1

ei〈ui, ·〉.

The operations 〈vi, ·〉 and 〈ui, ·〉 indicate that V̂ ∗ and Ŵ ∗ act by performing inner products in
H. The inner product is defined in such a way that for f ∈ H and c a complex constant the
mapping V̂ ∗cf produces a vector in Ck of the form V̂ ∗cf = c

∑k

i=1 ei〈vi, f〉. The operation

〈ei, ·〉 indicates the inner product in C
k, thereby for r ∈ C

k the mapping V̂ cr yields a vector in
V of the form V̂ cr = c

∑k

i=1 vi〈ei, r〉. Note that the matrix representation of Ŵ ∗V̂ has elements
given by the inner products 〈ui, vj〉, i, j = 1, . . . , k. The operator

V̂ (Ŵ ∗V̂ )†Ŵ ∗,

where (·)† denotes the Moore-Penrose pseudo-inverse, is known to be the oblique projector onto
V along W⊥ [15]. The particular choice

ui = vi − P̂W⊥vi = P̂Wvi, i = 1, . . . , k (3)

produces the expression for ÊVW⊥ used in signal processing applications [13]. Certainly, setting
Ŵ = P̂W V̂ one has the convenient equation

ÊVW⊥ = V̂ (V̂ ∗P̂W V̂ )†V̂ ∗P̂W (4)

that we adopt hereafter.
Amongst the many properties of oblique projectors that have been studied we shall recall

only the basic property needed for our purpose. It follows by applying P̂W on both sides of (4),
i.e.,

P̂WÊVW⊥ = P̂W V̂ (V̂ ∗P̂W V̂ )†V̂ ∗P̂W . (5)

Since V̂ ∗P̂ ∗
W = V̂ ∗P̂W and V̂ ∗P̂W V̂ = V̂ ∗P̂ 2

W V̂ , with the substitution A = P̂W V̂ the right hand
side of (5) takes the form Â(Â∗Â)†Â∗. Such an operator is the orthogonal projector onto R(Â).
Consequently,

P̂WÊVW⊥ = P̂W , with W = R(P̂W V̂ ) = span{P̂Wvi}
k
i=1. (6)

By denoting ũi =
∑k

j=1 g†i,juj with g†i,j the element (i, j) of matrix (V̂ ∗P̂W V̂ )†, we can express

ÊVW⊥ as

ÊVW⊥ =

k∑
i=1

vi〈ũi, ·〉. (7)

Furthermore, from (6),(7), and (3)

P̂W = P̂WÊVW⊥ =

k∑
i=1

ui〈ũi, ·〉. (8)
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Because P̂W is self-adjoint span{ũi}
k
i=1 = span{ui}

k
i=1 = W, and vice versa. On comparing (7)

and (8) we see that the dual vectors ũi are the same. This is of enormous assistance to derive
the equations for adapting oblique projectors so as to account for the updating or downdating
of the projecting subspace V. This will allow us to give the proofs of the proposed recursive
equations either by verification or by induction.

Remark 1. It is appropriate to stress at this point that if we chose W⊥ = V⊥ we would have
ui ≡ vi, i = 1, . . . , k and consequently span{ui}

k
i=1 ≡ span{vi}

k
i=1. Hence for such special

situation ÊVV⊥ ≡ P̂W ≡ P̂V and all the recursive equations of the subsequent sections would
give rise to orthogonal projectors.

3 Constructing recursive equations

In this section we provide the equations for updating and downdating oblique projectors in
order to account for the following situations:

Let us consider that the oblique projector ÊVkW⊥ onto the subspace Vk = span{vi}k
i=1 along

a given subspace W⊥ is known. If the subspace Vk is enlarged to Vk+1 by the inclusion of
one element, i.e., Vk+1 = span{vi}

k+1
i=1 , we wish to construct ÊVk+1W⊥ from the availability of

ÊVkW⊥. On the other hand, if the subspace Vk = span{vi}k
i=1 is reduced by the elimination

of one element, say the j-th one, we wish to construct the corresponding oblique projector
ÊVk\jW⊥ from the knowledge of ÊVkW⊥. The subspaceW⊥ is assumed to be fixed. Its orthogonal

complement Wk in Hk = Vk +W⊥ changes with the index k to satisfy Hk =Wk ⊕W⊥, where
⊕ denotes an orthogonal sum whilst the former is a direct sum, i.e., Vk ∩W⊥ = {0}.

3.1 Updating the oblique projector ÊVkW⊥ to ÊVk+1W⊥

We assume that ÊVkW⊥ is known and write it in the explicit form

ÊVkW⊥ =
k∑

i=1

vi〈ũ
k
i , ·〉. (9)

Our aim is to find the vector ũk+1
k+1, and to change the vectors ũk

i , i = 1, . . . , k to ũk+1
i , i = 1, . . . , k,

so as to obtain

ÊVk+1W⊥ =
k+1∑
i=1

vi〈ũ
k+1
i , ·〉. (10)

We will show that the duals ũk+1
i , i = 1, . . . , k +1 can be constructed inductively from the dual

of a single vector.

Lemma 1. For ũ1
1 = u1

||u1||2
, with u1 = P̂Wv1, operator v1〈ũ1

1, ·〉 is the oblique projector onto the

span of the single vector v1 along W⊥.

Proof. From the definition of u1 (C.f. eq. (3)) it follows that the operator v1〈ũ1
1, ·〉 = v1〈

u1

||u1||2
, ·〉

maps every vector in W⊥ to the zero vector. Suppose that f is in the span of v1. Then f = cv1

for some constant c. Since 〈u1, u1〉 = 〈u1, v1 − P̂W⊥v1〉 = 〈u1, v1〉 we have

v1〈ũ
1
1, cf〉 = cv1

〈u1, v1〉

||u1||2
= cv1 = f.
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Moreover v1〈ũ
1
1, v1〉〈ũ

1
1, ·〉 = v1〈ũ

1
1, ·〉, which concludes the proof that v1〈ũ

1
1, ·〉 is the oblique

projector onto the span of v1 along W⊥.

In order to inductively construct from ũ1
1 = u1

||u1||2
the duals ũk+1

i , i = 1, . . . , k + 1 we have
to discriminate two possibilities

i) Vk+1 = span{vi}
k+1
i=1 = span{vi}k

i=1 = Vk, i.e., vk+1 ∈ Vk.

ii) Vk+1 = span{vi}
k+1
i=1 ⊃ span{vi}k

i=1 = Vk, i.e. vk+1 /∈ Vk.

Let us consider first the case i). Clearly if vk+1 ∈ Vk the corresponding uk+1 = vk+1− P̂W⊥vk+1

belongs to Wk = span{ui}k
i=1, because vk+1 =

∑k

i=1 civi yields uk+1 =
∑k

i=1 ciui. The proposi-
tion below prescribes how to modify the corresponding dual vectors in order to guarantee that
ÊVk+1W⊥ = ÊVkW⊥.

Proposition 1. Let vk+1 ∈ Vk and vectors ũk
i in (9) be given. For an arbitrary vector yk+1 ∈ H

the dual vectors ũk+1
i computed as

ũk+1
i = ũk

i − 〈uk+1, ũ
k
i 〉yk+1 (11)

for i = 1, . . . , k and ũk+1
k+1 = yk+1 produce the identical oblique projector as the dual vectors

ũk
i , i = 1, . . . , k.

Proof. We use (11) to explicitly express ÊVk+1W⊥

k+1∑
i=1

vi〈ũ
k+1
i , ·〉 =

k∑
i=1

vi〈ũ
k
i , ·, 〉 −

k∑
i=1

vi〈ũ
k
i , uk+1〉〈yk+1, ·〉+ vk+1〈yk+1, ·〉

= ÊVkW⊥ − ÊVkW⊥uk+1〈yk+1, ·〉+ vk+1〈yk+1, ·〉

= ÊVkW⊥ − vk+1〈yk+1, ·〉+ vk+1〈yk+1, ·〉, (12)

where the last equality holds because ÊVkW⊥P̂W⊥ = 0 and ÊVkW⊥vk+1 = vk+1 for vk+1 ∈ Vk.

Hence, the left hand side of (12) equals ÊVkW⊥.

The next proposition considers the case ii)

Proposition 2. Let vector vk+1 /∈ Vk and vectors ũk
i , i = 1, . . . , k in (9) be given. Thus the

dual vectors ũk+1
i computed as

ũk+1
i = ũk

i − ũk+1
k+1〈uk+1, ũ

k
i 〉, (13)

where ũk+1
k+1 = qk+1

||qk+1||2
with qk+1 = uk+1−P̂Wk

uk+1, provide us with the oblique projector ÊVk+1W⊥.

Proof. In order to organize the proof let us establish the following relations:

〈qk+1, vi〉 = 0, for i = 1, . . . , k (14)

〈qk+1, vk+1〉 = 〈uk+1, vk+1〉 − 〈vk+1, P̂W⊥vk+1〉 = ||qk+1||
2. (15)

The first relation follows from the definition of qk+1 and the fact that P̂Wk
vi = ui for i = 1, . . . , k

〈qk+1, vi〉 = 〈uk+1, vi〉 − 〈P̂Wk
uk+1, vi〉 = 〈uk+1, ui〉+ 〈uk+1, P̂W⊥vi〉 − 〈uk+1, P̂Wk

vi〉 = 0.
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On the other hand

〈qk+1, vk+1〉 = 〈uk+1, vk+1〉 − 〈uk+1, P̂Wk
vk+1〉 = 〈uk+1, vk+1〉 − 〈vk+1, P̂Wk

vk+1〉.

Furthermore

||qk+1||
2 = 〈qk+1, uk+1〉 − 〈qk+1, P̂Wk

uk+1〉 = 〈qk+1, uk+1〉

= 〈qk+1, vk+1〉 − 〈qk+1, P̂W⊥vk+1〉 = 〈qk+1, vk+1〉

= 〈uk+1, vk+1〉 − 〈vk+1, P̂Wk
vk+1〉.

We are now in a position to start the proof of the proposition by induction. From Lemma 1 we
know that v1〈u1

1, ·〉/||u
1
1||

2 is the oblique projector onto V1 along W⊥. Assuming that ÊVkW⊥

is the oblique projector onto Vk along W⊥ we will prove that ÊVk+1W⊥ is the oblique projector
onto Vk+1 along W⊥. For this we need to prove that the recursive equation (13) yields the
operator ÊVk+1W⊥ satisfying:

i) Ê2
Vk+1W⊥ = ÊVk+1W⊥

ii) ÊVk+1W⊥v = v, for any v ∈ Vk+1

iii) ÊVk+1W⊥w = 0, for any w ∈ W⊥.

We begin by using (13) to express ÊVk+1W⊥ as

k+1∑
i=1

vi〈ũ
k+1
i , ·〉 =

k∑
i=1

vi〈ũ
k
i , ·, 〉 −

k∑
i=1

vi〈ũ
k
i , uk+1〉〈ũ

k+1
k+1, ·〉+ vk+1〈ũ

k+1
k+1, ·〉

= ÊVkW⊥ − ÊVkW⊥uk+1〈
qk+1

||qk+1||2
, ·〉+ vk+1〈

qk+1

||qk+1||2
, ·〉. (16)

For all w in W⊥ it holds that ÊVkW⊥w = 0 and 〈qk+1, w〉 = 0. Then from (16) we conclude

that condition iii) is satisfied. Every v ∈ Vk+1 can be written as v =
∑k+1

i=1 civi. Thus, from
(16) and using relations (14) and (15)

ÊVk+1W⊥v =

k∑
i=1

civi + ck+1ÊVkW⊥vk+1 − ck+1ÊVkW⊥uk+1 + ck+1vk+1

=

k∑
i=1

civi + ck+1vk+1 = v,

which demonstrates condition ii). Finally, since from (16) and (14) it follows that ÊVk+1W⊥ÊVkW⊥ =

ÊVkW⊥, we have

Ê2
Vk+1W⊥ = ÊVkW⊥ − ÊVkW⊥uk+1〈

qk+1

||qk+1||2
, ·〉+ ÊVk+1W⊥vk+1〈

qk+1

||qk+1||2
, ·〉

= ÊVkW⊥ − ÊVkW⊥uk+1〈
qk+1

||qk+1||2
, ·〉+ vk+1〈

qk+1

||qk+1||2
, ·〉 = ÊVk+1W⊥. (17)
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Property 1. If vectors {vi}
k
i=1 are linearly independent they are also biorthogonal to the dual

vectors arising inductively from the recursive equation (13).

The proof of this property is given in Appendix A.

Remark 2. If vectors {vi}k
i=1 are not linearly independent the oblique projector ÊVkW⊥ is not

unique. Indeed, if {ũk
i }

k
i=1 are dual vectors giving rise to ÊVkW⊥ then one can construct infinitely

many duals as:

ỹi = ũk
i + yi −

k∑
j=1

yj〈vj, ũ
k
i 〉 i = 1, . . . , k, (18)

where yi, i = 1, . . . , k are arbitrary vectors in H.

Proof. We use (18) to write

k∑
i=1

vi〈ỹi, ·〉 = ÊVkW⊥ +

k∑
i=1

vi〈yi, ·〉 −
k∑

i=1

vi

k∑
j=1

〈ũk
i , vj〉〈yj, ·〉

= ÊVkW⊥ +

k∑
i=1

vi〈yi, ·〉 −
k∑

j=1

k∑
i=1

vi〈ũ
k
i , vj〉〈yj, ·〉

= ÊVkW⊥ +

k∑
i=1

vi〈yi, ·〉 −
k∑

j=1

vj〈yj, ·〉

= ÊVkW⊥. (19)

It follows from Property 1 that if vectors {vi}k
i=1 are linearly independent equation (18)

yields the unique duals ỹi ≡ ũk
i , i = 1, . . . , k.

3.2 Downdating the oblique projector ÊVkW⊥ to ÊVk\jW⊥

Suppose that by the elimination of the element j the subspace Vk is reduced to Vk\j =
span{vi}k

i=1

i6=j

. In order to give the equations for adapting the corresponding dual vectors gener-

ating the oblique projector ÊVk\jW⊥ we need to consider two situations:

i) Vk\j = span{vi}k
i=1

i6=j

= span{vi}k
i=1 = Vk i.e., vj ∈ Vk\j.

ii) Vk\j = span{vi}k
i=1

i6=j

⊂ span{vi}k
i=1 = Vk, i.e., vj 6∈ Vk\j .

The next proposition addresses i).

Proposition 3. Let ÊVkW⊥ be given by (9) and let us assume that removing vector vj from the
spanning set of Vk leaves the identical subspace, i.e., vj ∈ Vk\j. Hence, if the remaining dual
vectors are modified as follows:

ũ
k\j
i = ũk

i +
〈uj, ũ

k
i 〉ũ

k
j

1− 〈uj, ũk
j 〉

, (20)

the corresponding oblique projector does not change, i.e. ÊVk\jW⊥ = ÊVkW⊥.
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Proof. Let us recall that vj ∈ Vk\j implies uj ∈ Vk\j. Hence 〈uj, ũ
k
j 〉 6= 1, as it is seen from

the fact that 〈uj, ũ
k
j 〉 =

∑k

i=1〈uj, ũ
k
i 〉〈ui, ũ

k
j 〉 =

∑k

i=1〈uj, ũ
k
i 〉〈ũ

k
i , uj〉 =

∑k

i=1 |〈uj, ũ
k
i 〉|

2, which
implies 〈uj, ũ

k
j 〉 = 1 if and only if for i = 1, . . . , k it holds that 〈uj, ũ

k
i 〉 = δi,j. This is not true

if vj ∈ Vk\j so that we can use (20) to express ÊVk\jW⊥ as

k∑
i=1

i6=j

vi〈ũ
k\j
i , ·〉 =

k∑
i=1

i6=j

vi〈ũ
k
i , ·〉+

k∑
i=1

i6=j

vi〈ũk
i , uj〉〈ũk

j , ·〉

1− 〈ũk
j , uj〉

= ÊVkW⊥ − vj〈ũ
k
j , ·〉+

ÊVkW⊥uj〈ũk
j , ·〉

1− 〈ũk
j , uj〉

− vj〈ũ
k
j , uj〉

〈ũk
j , ·〉

1− 〈ũk
j , uj〉

= ÊVkW⊥ − vj〈ũ
k
j , ·〉+

vj〈ũk
j , ·〉

1− 〈ũk
j , uj〉

−
vj〈ũk

j , ·〉

1− 〈ũk
j , uj〉

〈ũk
j , uj〉

= ÊVkW⊥. (21)

Finally, proposition 4 addresses ii).

Proposition 4. Let ÊVkW⊥ be given by (9) and let us assume that the vector vj to be removed

from the spanning set of Vk is not in Vk\j. In order to produce the oblique projector ÊVk\jW⊥ the
appropriate modification of the dual vectors can be achieved by means of the following equation

ũ
k\j
i = ũk

i −
ũk

j 〈ũ
k
j , ũ

k
i 〉

||ũk
j ||

2
. (22)

Proof. Using (22) we write:

k∑
i=1

i6=j

vi〈ũ
k\j
i , ·〉 =

k∑
i=1

i6=j

vi〈ũ
k
i , ·〉 −

k∑
i=1

i6=j

vi〈ũ
k
i , ũ

k
j 〉〈ũ

k
j , ·〉

||ũk
j ||

2

= ÊVkW⊥ − vj〈ũ
k
j , ·〉 −

ÊVkW⊥ũk
j 〈ũ

k
j , ·〉

||ũk
j ||

2
+ vj〈ũ

k
j , ·〉

= ÊVkW⊥ −
ÊVkW⊥ũk

j 〈ũ
k
j , ·〉

||ũk
j ||

2
. (23)

We notice that
ũk

j 〈ũ
k
j ,·〉

||ũk
j ||

2 is the orthogonal projector onto the span of the single vector ũk
j and

denote it as P̂ũk
j

=
ũk

j 〈ũ
k
j ,·〉

||ũk
j ||

2 . Thus the orthogonal projector onto Wk\j can be expressed as

P̂Wk\j
= P̂Wk

− P̂ũk
j
. Applying this operator on the right hand side of (23) we obtain:

P̂Wk\j
(ÊVkW⊥ − ÊVkW⊥P̂ũk

j
) = (P̂Wk

− P̂ũk
j
)(ÊVkW⊥ − ÊVkW⊥P̂ũk

j
)

and, since P̂Wk
ÊVkW⊥ = P̂Wk

and P̂ũk
j
P̂Wk

= P̂ũk
j
, using the fact that P̂ũk

j
ÊVkW⊥ = P̂ũk

j
P̂Wk

ÊVkW⊥ =

P̂ũk
j

it follows that

(P̂Wk
− P̂ũk

j
)(ÊVkW⊥ − ÊVkW⊥P̂ũk

j
) = P̂Wk

− P̂ũk
j
− P̂ũk

j
+ P̂ũk

j

= P̂Wk
− P̂ũk

j
= P̂Wk\j

= P̂Wk\j
ÊVk\jW⊥.

8



From the last equation and (23) we gather that

P̂Wk\j

k∑
i=1

i6=j

vi〈ũ
k\j
i , ·〉 − P̂Wk\j

ÊVk\jW⊥ = 0. (24)

For every vector f ∈ H we therefore have

P̂Wk\j
(

k∑
i=1

i6=j

vi〈ũ
k\j
i , ·〉 − ÊVk\jW⊥)f = P̂Wk\j

∆D̂f = 0, (25)

with ∆D̂ =
∑k

i=1

i6=j

vi〈ũ
k\j
i , ·〉 − ÊVk\jW⊥. This implies that either ∆D̂ is the zero operator or

∆D̂f ∈ W⊥ for every f ∈ H. The latter cannot be true because from the definition of ∆D̂ it
is seen that ∆D̂f ∈ Vk\j and by hypothesis Vk\j ∩W

⊥ = {0}. Hence ∆D̂ should be the zero
operator, which leads to the conclusion that

ÊVk\jW⊥ =

k∑
i=1

i6=j

vi〈ũ
k\j
i , ·〉. (26)

Remark 3. The case of replacing a vector in Vk, say vj by v′j, is actually equivalent to aug-
menting the subspace Vk\j to Vk\j + v′j after the vector vj was deleted. Some implementation
issues arise, though. In order to modify the duals as prescribed in (13) we need to compute a
vector qk\j = u′j − P̂Wk\j

u′j. For the sequential enlargement of the projecting subspace, discussed

in section 3.1, the projector P̂Wk
can be sequentially constructed by means of the orthonormal

vectors qn/||qn||, n = 1, . . . , k. Nevertheless, when replacing vectors sequentially we need to
allow for the recalculation of the corresponding projectors. One possibility that could be consid-
ered is the recalculation of the orthogonal vectors qn [27,28]. An alternative approach implies to
use of the dual corresponding to the deleted vector for orthogonalization purposes. A discussion
concerning the implementation of such a procedure is given in [29,30].

4 Applications to signals discrimination

The examples presented in this section aim at illustrating the application of our recursive
construction of oblique projectors for signals in L2[a , b], the space of square integrable functions
on [a , b]. For f and g in L2[a , b], we define the inner product, according to the previously
adopted convention, as

〈f, g〉 =

∫ b

a

f ∗(x)g(x) dx,

where f ∗(x) indicates the complex conjugate of f . In the examples bellow all the integrals are
numerically calculated.

9



4.1 Extraction of a X-ray diffraction peak from a dispersive back-

ground

Here the signal is simulated by emulating a crystallographic problem. It is assumed to be the
X-ray diffraction intensity produced by a powder sample of a clay mineral consisting of very
flat crystals. Each such crystal is formed by the stacking of n layers producing a diffraction
intensity as given by [31, 32]

In(x) =
sin2 nx

sin2 x
, (27)

where the variable x, given in radians, is related to the diffraction angle θ according to the
equation

x = 2π
d

λ
sin θ. (28)

The parameter d in (28) is the effective distance between two consecutive layers and character-
izes the material. The parameter λ represents the wavelength of the incident radiation.

We denote the diffraction intensity produced by the whole sample as f1(x). Thus,

f1(x) =

k∑
n=1

cn

sin2 nx

sin2 x
. (29)

As already mentioned n indicates the possible number of layers forming a single crystal in the
sample. The coefficients cn account for the proportions of crystals consisting of n layers. Here,
for simulating the signal, the coefficients were considered to be

cn = e−0.05(n−7)2 + 0.2e−0.1(n−35)2 , n = 1 . . . , 60.

The diffraction figure f1 emerges from a background that is modelled as

f2(x) = 50
3∑

j=1

je−j(x−π
2
). (30)

The combined phenomenon gives rise to the signal f = f1 + f2 plotted in the left graph of
Figure 1 on the interval relevant to the diffraction model, namely [π

2
, 3π

2
].

We are interested in extracting the diffraction peak f1 from the background. For this we
will construct sequentially oblique projectors onto subspaces Vk given as

Vk = span{
sin2 nx

sin2 x
, n = 1, . . . , k}, x ∈ [

π

2
,

3π

2
].

The final k-value is to be adjusted. The subspace W⊥ is here

W⊥ = span{e−j(x−π
2
), j = 1, . . . , 3}, x ∈ [

π

2
,

3π

2
].

Since the order k of the diffraction model is assumed unknown, it was adjusted as follows: firstly
the order model was sequentially increased (up to k = 200) and then sequentially downdated.
It was observed that the recovering of the signal was not very sensitive to the model order.
In a range from k = 50 to k = 200 the approximations were totally equivalent. From k = 40
to k = 50 changes in the approximations were noticed but the approximations could still be

10



considered ‘practically’ equivalent. The recovered peak f1 = ÊVkW⊥f (for k = 50) is depicted
in the right graph of Figure 1. It happens to coincide, in the scale of the figure, with the graph
of the theoretical one (C.f. (29)).

The convenience of the proposed adaptive technique in the determination of the order of
the diffraction intensity model is clear: otherwise when changing the k value as described above
the whole projector would have to be recalculated for each different value of k. However, the
advantage of the proposed technique is even more significant when, as is the case in the next
example, overestimation of the order in the signal model may result in the failure to discriminate
the signals.

2 2.5 3 3.5 4 4.5
0

50

100

150

200
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300
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0

50

100

150

200

250

300

Figure 1: Graphs on the left: Diffraction intensity vs the variable x measured in radians and
related to the diffraction angle through (28). Graph on the right: Diffraction intensity extracted
from the background.

4.2 Elimination of impulsive noise

In this case the signal is considered to be the register of the motion of a system consisting of
uncoupled damped harmonic oscillators. The n-th oscillator is characterized by a frequency of
n
2

Hz. The corresponding equation for its motion xn(t) as a function of time is given as

xn(t) = e−t cos(πnt), n = 1, . . . , k. (31)

The distribution of frequencies is considered to be cn = (1 +0.7(n− 75)2)−1 so that the motion
of the system is registered by the signal

f1(t) =

100∑
n=1

e−t cos(πnt)

1 + 0.7(n− 75)2
, t ∈ [0, 1]. (32)

This signal (shown in the right graphs of Figure 2) is corrupted by impulsive noise, which
represents a type of electrical noise appearing in some practical situations. The possible pulses
are taking from the set of 400 Gaussian sparks pj(t) = e−100000(t−0.0025j)2 , j = 1, . . . , 400. Hence
the corresponding subspace W⊥ is

W⊥ = span{e−100000(t−0.0025j)2 , j = 1, . . . , 400}, t ∈ [0, 1].
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First a random superposition of 50 pulses is added to the signal f1 to simulate the noisy one
plotted in the top left graph of Figure 2. The result after the oblique projections along the
subspace W⊥ given above is shown in the top right graph (it coincides with the theoretical
signal f1 given in (32)). The left graph at the bottom of Figure 2 corresponds to a different
realization of the noise, in this case generated as a random superposition of 200 pulses. The
signal, after filtering by oblique projections along W⊥, is shown in the right graph (it also
coincides with the theoretical one).
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Figure 2: Top left graph: motion of the harmonic oscillators system as a function of time (in
seconds) corrupted by 50 random pulses. The graph on the right depicts the signal after filtering
the noise by sequential oblique projection. The bottom figures have the same description but
the noise corresponds to 200 random pulses.

Let us point out that an alternative way of splitting the signal would entail fitting both
the signal and noise models, with the consequent increment in the dimension of the problem
of determining the corresponding unknown parameters. In the example of this section, for
instance, 400 more parameters (coefficients of the noise model) would be involved.
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5 Conclusions

Recursive equations for updating/downdating oblique projectors have been proposed. The
updating strategy can be regarded as a generalized Gram-Schmidt like procedure for generating
a sequence giving rise to oblique projectors along a fixed subspace. The downdating strategy
modifies such sequence to account for the removal of some elements. The equations are of
the same nature as those for producing orthogonal projectors, but involve different vectors.
Orthogonal projectors arise within this framework as a particular case.

The proposed technique has been applied to the problem of discriminating signals produced
by different phenomena. The applications that have been considered assume that the signal
model is determined by physical considerations and only the order of the model is to be adjusted.
The task of setting the right order model is facilitated by the recursive nature of the proposed
equations. In the two examples considered here the signal splitting is not very sensitive to the
order of the signal model. However, an important difference between the two examples is the
following: while in the first example an excessive overestimation of order model (maximum
possible number of layers present in a crystal) does not prevent the extraction of the diffraction
peak from the background, an excessive overestimation of the order of the model in the second
example (maximum possible frequency of an oscillator) may produce the failure to separate
the signal from the impulsive noise. The reason being that for very high frequencies the angle
between the signal subspace and the noise subspace becomes very small, which generates an ill
posed problem.

The recursive feature of the proposed equations turns out to be even more important in those
situations in which the signals splitting is achieved by stepwise selection of each component of
the signal model. This is the subject of a recent work [33], where the present approach is shown
to be of significant assistance.
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Appendix A: Proof of Property 1

Let us recall that if vectors {vi}
k+1
i=1 are linearly independent, all the duals {ũk+1

i }k+1
i=1 are gen-

erated by the recursive equation (13). We need to show that such vectors satisfy:

〈vm, ũk+1
i 〉 = δm,i, m, i = 1, . . . , k + 1.

Proof. For k = 0 the relation holds because ũ1
1 = u1

||u1||2
and ||u1||2 = 〈v1, v1〉 − 〈v1, P̂W⊥v1〉.

Therefore 〈v1, ũ
1
1〉 =

〈v1,v1〉−〈v1,P̂
W⊥v1〉

〈v1,v1〉−〈v1,P̂
W⊥v1〉

= 1.

Assuming that for k + 1 = l it is true that

〈vm, ũl
i〉 = δm,i, m, i = 1, . . . , l

we will prove that
〈vm, ũl+1

i 〉 = δm,i, m, i = 1, . . . , l + 1.

For this we need to consider four different situations with regard to the indices.

I) m = 1, . . . , l and i = 1, . . . , l.

In this case 〈vm, ql+1〉 = 0 (C.f. (14)). Hence, from the recursive equation (13), we have

〈vm, ũl+1
i 〉 = 〈vm, ũl

i〉+ 0 = δm,i.

II) m = l + 1 and i = 1, . . . , l

Now

〈vl+1, ũ
l+1
i 〉 = 〈vl+1, ũ

l
i〉 −

〈vl+1, ql+1〉

||ql+1||2
〈vl+1, ũ

l
i〉

= 〈vl+1, ũ
l
i〉
||qk+1||2 − 〈vl+1, ql+1〉

||ql+1||2

so that, since 〈vl+1, ql+1〉 = ||qk+1||2 (C.f. (15)),

〈vl+1, ũ
l+1
i 〉 = 0.

III) m = l + 1 and i = l + 1.

This implies

〈vl+1, ũ
l+1
l+1〉 =

〈vl+1, ql+1〉

||ql+1||2
= 1.

IV) m = 1, . . . , l and i = 1 + l.

In this case

〈vm, ũl+1
l+1〉 =

〈vm, ql+1〉

||ql+1||2
= 0.

From I) II) III) and VI) we conclude that

〈vm, ũl+1
i 〉 = δm,i, m, i = 1, . . . , l + 1,

which proves that the vectors generated through (13) are biorthogonal to vectors vm, m =
1, . . . , k + 1.
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