Highly Nonlinear Approximations for Sparse Signal Representation

Logo EPSRC

Possible constructions of oblique projector

Notice that the oblique projector onto $ {\cal{V}}$ is independent of the selection of the spanning set for $ {\cal{W}}$. The possibility of using different spanning sets yields a number of different ways of computing $ \hat{E}_{{\cal{V}}{\cal{W}^\bot}}$, all of them theoretically equivalent, but not necessarily numerically equivalent when the problem is ill posed.

Given the sets $ \{v_i\}_{i=1}^{M}$ and $ \{u_i\}_{i=1}^{M}$ we have considered the following theoretically equivalent ways of computing vectors $ \{w_i\}_{i=1}^{M}$.

i)
$ w_i= \sum_{j=1}^{M} \tilde g_{i,j} u_j$, where $ \tilde g_{i,j}$ is the $ (i,j)$-th element of the inverse of the matrix $ G$ having elements $ g_{i,j}= \langle u_i, v_j\rangle ,  i,j=1,\ldots,M$.
ii)
Vectors $ \{w_i\}_{i=1}^{M}$ are as in i) but the matrix elements of $ G$ are computed as $ g_{i,j}= \langle u_i, u_j\rangle , 
i,j=1,\ldots,M$.
iii)
Orthonormalising $ \{u_i\}_{i=1}^{M}$ to obtain $ \{q_i\}_{i=1}^{M'}   M'\le M$ vectors $ \{w_i\}_{i=1}^{M}$ are then computed as

$\displaystyle w_i= \sum_{j=1}^{M} \tilde g_{i,j} q_j, $

with $ g_{i,j}= \langle q_i, v_j\rangle ,  i,j=1,\ldots,M$.
iv)
Same as in iii) but $ g_{i,j}= \langle q_i, u_j\rangle ,  i,j=1,\ldots,M$.
Moreover, considering that $ \psi_n \in \mathbb{F}^M,  n=1,\ldots,M$, are the eigenvectors of $ \hat{G}$ and assuming that there exist $ N$ nonzero eigenvalues on ordering these eigenvalues in descending order $ \lambda_n, n=1,\ldots,N$, we can express the matrix elements of the Moore-Penrose pseudo inverse of $ G$ as:

$\displaystyle {g}^\dagger_{i,j} = \sum_{n=1}^N \psi_n(i) \frac{1}{\lambda_n} \psi_n^\ast(j
 ),$ (10)

with $ \psi_n(i)$ the $ i$-th component of $ \psi_n$. Moreover, the orthonormal vectors

$\displaystyle \xi_n= \frac{\hat{W}\psi_n}{\sigma_n},\quad \sigma_n=\sqrt{\lambda_n},\quad
 n=1,\ldots,N$ (11)

are singular vectors of $ \hat{W}$, which satisfies $ \hat{W}^\ast \xi_n=\sigma_n \psi_n$, as it is immediate to verify. By defining now the vectors $ \eta_n, n=1,\ldots,N$ as

$\displaystyle \eta_n= \frac{\hat{V}{\psi_n}}{\sigma_n},
 \quad  n=1,\ldots,N,$ (12)

the projector $ \hat{E}_{{\cal{V}}{\cal{W}^\bot}}$ in (3) is recast

$\displaystyle \hat{E}_{{\cal{V}}{\cal{W}^\bot}}=\sum_{n=1}^N \eta_n \langle \xi_n , \cdot \rangle .$ (13)

Inversely, the representation (3) of $ \hat{E}_{{\cal{V}}{\cal{W}^\bot}}$ arises from (13), since

$\displaystyle w_i= \sum_{n=1}^N \xi_n \frac{1} {\sigma_n} \psi^\ast_n(i), \quad i=1,\ldots,M.$ (14)

Proposition 2   The vectors $ \xi_n \in {\cal{W}}, n=1,\ldots,N$ and $ \eta_n \in {\cal{V}}, n=1,\ldots,N$ given in (11) and (12) are biorthogonal to each other and span $ {\cal{W}}$ and $ {\cal{V}}$, respectively.

The proof of this proposition can be found in [7] Appendix A.

All the different numerical computations for an oblique projector discussed above can be realized with the routine ObliProj.m.